These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 15089349)
1. Distribution of reflection eigenvalues in many-channel chaotic cavities with absorption. Savin DV; Sommers HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):035201. PubMed ID: 15089349 [TBL] [Abstract][Full Text] [Related]
2. Delay times and reflection in chaotic cavities with absorption. Savin DV; Sommers HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036211. PubMed ID: 14524872 [TBL] [Abstract][Full Text] [Related]
3. Statistics of reflection eigenvalues in chaotic cavities with nonideal leads. Vidal P; Kanzieper E Phys Rev Lett; 2012 May; 108(20):206806. PubMed ID: 23003168 [TBL] [Abstract][Full Text] [Related]
4. Statistical wave scattering through classically chaotic cavities in the presence of surface absorption. Martínez-Mares M; Mello PA Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026224. PubMed ID: 16196701 [TBL] [Abstract][Full Text] [Related]
5. Universal transport properties of open microwave cavities with and without time-reversal symmetry. Schanze H; Stöckmann HJ; Martínez-Mares M; Lewenkopf CH Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016223. PubMed ID: 15697714 [TBL] [Abstract][Full Text] [Related]
6. Direct processes in chaotic microwave cavities in the presence of absorption. Kuhl U; Martínez-Mares M; Méndez-Sánchez RA; Stöckmann HJ Phys Rev Lett; 2005 Apr; 94(14):144101. PubMed ID: 15904067 [TBL] [Abstract][Full Text] [Related]
7. Integrable theory of quantum transport in chaotic cavities. Osipov VA; Kanzieper E Phys Rev Lett; 2008 Oct; 101(17):176804. PubMed ID: 18999772 [TBL] [Abstract][Full Text] [Related]
8. Effect of spatial reflection symmetry on the distribution of the parametric conductance derivative in ballistic chaotic cavities. Martínez-Mares M; Castaño E Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036201. PubMed ID: 15903540 [TBL] [Abstract][Full Text] [Related]
9. Distribution of reflection coefficients in absorbing chaotic microwave cavities. Méndez-Sánchez RA; Kuhl U; Barth M; Lewenkopf CH; Stöckmann HJ Phys Rev Lett; 2003 Oct; 91(17):174102. PubMed ID: 14611349 [TBL] [Abstract][Full Text] [Related]
10. Statistical fluctuations of the parametric derivative of the transmission and reflection coefficients in absorbing chaotic cavities. Martínez-Mares M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036202. PubMed ID: 16241543 [TBL] [Abstract][Full Text] [Related]
11. Universality in chaotic quantum transport: the concordance between random-matrix and semiclassical theories. Berkolaiko G; Kuipers J Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):045201. PubMed ID: 22680530 [TBL] [Abstract][Full Text] [Related]
12. Wave scattering through classically chaotic cavities in the presence of absorption: An information-theoretic model. Kogan E; Mello PA; Liqun H Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):R17-20. PubMed ID: 11046362 [TBL] [Abstract][Full Text] [Related]
13. Formation of Fabry-Perot resonances in double-barrier chaotic billiards. Macêdo AM; Souza AM Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066218. PubMed ID: 16089860 [TBL] [Abstract][Full Text] [Related]
14. Electronic transport through ballistic chaotic cavities: reflection symmetry, direct processes, and symmetry breaking. Martínez M; Mello PA Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016205. PubMed ID: 11304333 [TBL] [Abstract][Full Text] [Related]
15. Chaotic scattering through coupled cavities. Takahashi K; Aono T Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026207. PubMed ID: 17358405 [TBL] [Abstract][Full Text] [Related]
16. Distribution of proper delay times in quantum chaotic scattering: a crossover from ideal to weak coupling. Sommers HJ; Savin DV; Sokolov VV Phys Rev Lett; 2001 Aug; 87(9):094101. PubMed ID: 11531567 [TBL] [Abstract][Full Text] [Related]
17. Electronic transport in chaotic mesoscopic cavities: A Kwant and random matrix theory based exploration. Chandramouli RS; Srivastav RK; Kumar S Chaos; 2020 Dec; 30(12):123120. PubMed ID: 33380063 [TBL] [Abstract][Full Text] [Related]
18. Statistics of quantum transport in weakly nonideal chaotic cavities. Rodríguez-Pérez S; Marino R; Novaes M; Vivo P Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052912. PubMed ID: 24329336 [TBL] [Abstract][Full Text] [Related]
19. Chaotic scattering with localized losses: S-matrix zeros and reflection time difference for systems with broken time-reversal invariance. Osman M; Fyodorov YV Phys Rev E; 2020 Jul; 102(1-1):012202. PubMed ID: 32794980 [TBL] [Abstract][Full Text] [Related]
20. Trace formula for dielectric cavities: general properties. Bogomolny E; Dubertrand R; Schmit C Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056202. PubMed ID: 19113195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]