These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 15089426)

  • 1. Defect-induced spatial coherence in the discrete nonlinear Schrödinger equation.
    Pando CL; Doedel EJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036603. PubMed ID: 15089426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Onset of chaotic symbolic synchronization between population inversions in an array of weakly coupled Bose-Einstein condensates.
    Pando CL; Doedel EJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056201. PubMed ID: 16089628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An approach to chaotic synchronization.
    Hramov AE; Koronovskii AA
    Chaos; 2004 Sep; 14(3):603-10. PubMed ID: 15446970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The development of generalized synchronization on complex networks.
    Guan S; Wang X; Gong X; Li K; Lai CH
    Chaos; 2009 Mar; 19(1):013130. PubMed ID: 19334994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forced synchronization of a self-sustained chaotic oscillator.
    González Salas JS; Campos Cantón E; Ordaz Salazar FC; Campos Cantón I
    Chaos; 2008 Jun; 18(2):023136. PubMed ID: 18601502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1/f noise in a thin stochastic layer described by the discrete nonlinear Schrödinger equation.
    Pando L CL; Doedel EJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016213. PubMed ID: 17358241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quasiperiodic localized oscillating solutions in the discrete nonlinear Schrödinger equation with alternating on-site potential.
    Johansson M; Gorbach AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):057604. PubMed ID: 15600805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can the shape of attractor forbid chaotic phase synchronization?
    Zaks MA; Park EH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026215. PubMed ID: 16196692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noise enhanced phase synchronization and coherence resonance in sets of chaotic oscillators with weak global coupling.
    Kiss IZ; Zhai Y; Hudson JL; Zhou C; Kurths J
    Chaos; 2003 Mar; 13(1):267-78. PubMed ID: 12675433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronization is enhanced in weighted complex networks.
    Chavez M; Hwang DU; Amann A; Hentschel HG; Boccaletti S
    Phys Rev Lett; 2005 Jun; 94(21):218701. PubMed ID: 16090357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of oscillator chains from high frequency initial conditions: comparison of phi4 and FPU-beta models.
    Lichtenberg AJ; Mirnov VV; Day C
    Chaos; 2005 Mar; 15(1):15109. PubMed ID: 15836286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple period-doubling bifurcation route to chaos in periodically pulsed Murali-Lakshmanan-Chua circuit-controlling and synchronization of chaos.
    Parthasarathy S; Manikandakumar K
    Chaos; 2007 Dec; 17(4):043120. PubMed ID: 18163784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boundary-induced instabilities in coupled oscillators.
    Iubini S; Lepri S; Livi R; Politi A
    Phys Rev Lett; 2014 Apr; 112(13):134101. PubMed ID: 24745424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantization of a free particle interacting linearly with a harmonic oscillator.
    Mainiero T; Porter MA
    Chaos; 2007 Dec; 17(4):043130. PubMed ID: 18163794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Onset of chaotic phase synchronization in complex networks of coupled heterogeneous oscillators.
    Ricci F; Tonelli R; Huang L; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):027201. PubMed ID: 23005889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized synchronization via nonlinear control.
    Juan M; Xingyuan W
    Chaos; 2008 Jun; 18(2):023108. PubMed ID: 18601475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous and discrete Schrödinger systems with parity-time-symmetric nonlinearities.
    Sarma AK; Miri MA; Musslimani ZH; Christodoulides DN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052918. PubMed ID: 25353872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chaotic synchronization of coupled electron-wave systems with backward waves.
    Hramov AE; Koronovskii AA; Popov PV; Rempen IS
    Chaos; 2005 Mar; 15(1):13705. PubMed ID: 15836273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Routes to complex dynamics in a ring of unidirectionally coupled systems.
    Perlikowski P; Yanchuk S; Wolfrum M; Stefanski A; Mosiolek P; Kapitaniak T
    Chaos; 2010 Mar; 20(1):013111. PubMed ID: 20370266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition from phase to generalized synchronization in time-delay systems.
    Senthilkumar DV; Lakshmanan M; Kurths J
    Chaos; 2008 Jun; 18(2):023118. PubMed ID: 18601485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.