These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 15089465)

  • 1. Localization of electromagnetic waves in three-dimensional fractal cavities.
    Takeda MW; Kirihara S; Miyamoto Y; Sakoda K; Honda K
    Phys Rev Lett; 2004 Mar; 92(9):093902. PubMed ID: 15089465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sound absorption by Menger sponge fractal.
    Kawabe T; Miyazaki T; Oka D; Koyanagi S; Hinokidani A
    J Acoust Soc Am; 2009 May; 125(5):2830-3. PubMed ID: 19425627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stage number and refractive index dependence of the quality factor of the localized electromagnetic eigenmodes in the Menger sponge fractal.
    Sakoda K
    Opt Express; 2007 Feb; 15(4):1783-93. PubMed ID: 19532416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subwavelength photonic band gaps from planar fractals.
    Wen W; Zhou L; Li J; Ge W; Chan CT; Sheng P
    Phys Rev Lett; 2002 Nov; 89(22):223901. PubMed ID: 12485068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous emission from radiative chiral nematic liquid crystals at the photonic band-gap edge: an investigation into the role of the density of photon states near resonance.
    Mavrogordatos TK; Morris SM; Wood SM; Coles HJ; Wilkinson TD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062504. PubMed ID: 23848702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractal dimension of trabecular bone: comparison of three histomorphometric computed techniques for measuring the architectural two-dimensional complexity.
    Chappard D; Legrand E; Haettich B; Chalès G; Auvinet B; Eschard JP; Hamelin JP; Baslé MF; Audran M
    J Pathol; 2001 Nov; 195(4):515-21. PubMed ID: 11745685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous emission from photonic crystals: full vectorial calculations.
    Li ZY; Lin LL; Zhang ZQ
    Phys Rev Lett; 2000 May; 84(19):4341-4. PubMed ID: 10990681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Second quantization and atomic spontaneous emission inside one-dimensional photonic crystals via a quasinormal-modes approach.
    Severini S; Settimi A; Sibilia C; Bertolotti M; Napoli A; Messina A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056614. PubMed ID: 15600786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of electromagnetic waves in a two-dimensional random medium.
    Ye Z; Li S; Sun X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):045602. PubMed ID: 12443251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LCAO approximation for scaling properties of the Menger sponge fractal.
    Sakoda K
    Opt Express; 2006 Nov; 14(23):11372-84. PubMed ID: 19529555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear Bloch waves in resonantly doped photonic crystals.
    Kaso A; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046611. PubMed ID: 17155196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photonic band gap enhancement in frequency-dependent dielectrics.
    Toader O; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046605. PubMed ID: 15600545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method.
    Li JJ; Li ZY; Zhang DZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056606. PubMed ID: 17677185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Square spiral photonic crystals: robust architecture for microfabrication of materials with large three-dimensional photonic band gaps.
    Toader O; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016610. PubMed ID: 12241503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Menger sponge-like fractal body created by a novel template method.
    Mayama H; Tsujii K
    J Chem Phys; 2006 Sep; 125(12):124706. PubMed ID: 17014199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-metallic three-dimensional photonic crystals with a large infrared bandgap.
    Fleming JG; Lin SY; El-Kady I; Biswas R; Ho KM
    Nature; 2002 May; 417(6884):52-5. PubMed ID: 11986662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractal heterogeneous media.
    Türk C; Carbone A; Chiaia BM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026706. PubMed ID: 20365674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional tumor perfusion reconstruction using fractal interpolation functions.
    Craciunescu OI; Das SK; Poulson JM; Samulski TV
    IEEE Trans Biomed Eng; 2001 Apr; 48(4):462-73. PubMed ID: 11322534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractal geometry of bean root systems: correlations between spatial and fractal dimension.
    Nielsen KL; Lynch JP; Weiss HN
    Am J Bot; 1997 Jan; 84(1):26-33. PubMed ID: 11539495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of one-dimensional photonic crystals based on the incident angle domain.
    Huang B; Gu P; Yang L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046601. PubMed ID: 14683059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.