These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 15089470)

  • 1. Universal and wide shear zones in granular bulk flow.
    Fenistein D; van de Meent JW; van Hecke M
    Phys Rev Lett; 2004 Mar; 92(9):094301. PubMed ID: 15089470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coexistence and transition between shear zones in slow granular flows.
    Moosavi R; Shaebani MR; Maleki M; Török J; Wolf DE; Losert W
    Phys Rev Lett; 2013 Oct; 111(14):148301. PubMed ID: 24138274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Core precession and global modes in granular bulk flow.
    Fenistein D; van de Meent JW; van Hecke M
    Phys Rev Lett; 2006 Mar; 96(11):118001. PubMed ID: 16605873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuum approach to wide shear zones in quasistatic granular matter.
    Depken M; van Saarloos W; van Hecke M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031302. PubMed ID: 16605512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear zones in granular media: three-dimensional contact dynamics simulation.
    Ries A; Wolf DE; Unger T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051301. PubMed ID: 18233646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of shear zones in granular packings under pressure.
    Madani M; Maleki M; Török J; Shaebani MR
    Soft Matter; 2021 Feb; 17(7):1814-1820. PubMed ID: 33399618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gravity Governs Shear Localization in Confined Dense Granular Flows.
    Shaebani MR; Török J; Maleki M; Madani M; Harrington M; Rice A; Losert W
    Phys Rev Lett; 2021 Dec; 127(27):278003. PubMed ID: 35061419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signatures of granular microstructure in dense shear flows.
    Mueth DM; Debregeas GF; Karczmar GS; Eng PJ; Nagel SR; Jaeger HM
    Nature; 2000 Jul; 406(6794):385-9. PubMed ID: 10935630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface flow profiles for dry and wet granular materials by Particle Tracking Velocimetry; the effect of wall roughness.
    Roy S; Scheper BJ; Polman H; Thornton AR; Tunuguntla DR; Luding S; Weinhart T
    Eur Phys J E Soft Matter; 2019 Feb; 42(2):14. PubMed ID: 30756195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear band formation in granular media as a variational problem.
    Unger T; Török J; Kertész J; Wolf DE
    Phys Rev Lett; 2004 May; 92(21):214301. PubMed ID: 15245284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wide shear zones and the spot model: implications from the split-bottom geometry.
    Woldhuis E; Tighe BP; van Saarloos W
    Eur Phys J E Soft Matter; 2009 Jan; 28(1):73-8. PubMed ID: 19139942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear zones in granular materials: optimization in a self-organized random potential.
    Török J; Unger T; Kertész J; Wolf DE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011305. PubMed ID: 17358143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Granular shear flow dynamics and forces: experiment and continuum theory.
    Bocquet L; Losert W; Schalk D; Lubensky TC; Gollub JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 1):011307. PubMed ID: 11800693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A constitutive law for dense granular flows.
    Jop P; Forterre Y; Pouliquen O
    Nature; 2006 Jun; 441(7094):727-30. PubMed ID: 16760972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective Wall Friction in Wall-Bounded 3D Dense Granular Flows.
    Artoni R; Richard P
    Phys Rev Lett; 2015 Oct; 115(15):158001. PubMed ID: 26550753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local fluctuations and spatial correlations in granular flows under constant-volume quasistatic shear.
    Guo N; Zhao J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042208. PubMed ID: 24827242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wide-gap Couette flows of dense emulsions: local concentration measurements, and comparison between macroscopic and local constitutive law measurements through magnetic resonance imaging.
    Ovarlez G; Rodts S; Ragouilliaux A; Coussot P; Goyon J; Colin A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036307. PubMed ID: 18851143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient and oscillatory granular shear flow.
    Toiya M; Stambaugh J; Losert W
    Phys Rev Lett; 2004 Aug; 93(8):088001. PubMed ID: 15447228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavior of granular materials under cyclic shear.
    Mueggenburg NW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031301. PubMed ID: 15903420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow velocity profiles and shear banding onset in a semidilute wormlike micellar system under Couette flow.
    Delgado J; Kriegs H; Castillo R
    J Phys Chem B; 2009 Nov; 113(47):15485-94. PubMed ID: 19874031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.