These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 1508983)

  • 1. Conformational changes of cytosolic loops of bovine rhodopsin during the transition to metarhodopsin-II: an investigation by Fourier transform infrared difference spectroscopy.
    Ganter UM; Charitopoulos T; Virmaux N; Siebert F
    Photochem Photobiol; 1992 Jul; 56(1):57-62. PubMed ID: 1508983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural changes in the lumirhodopsin-to-metarhodopsin I conversion of air-dried bovine rhodopsin.
    Nishimura S; Sasaki J; Kandori H; Lugtenburg J; Maeda A
    Biochemistry; 1995 Dec; 34(51):16758-63. PubMed ID: 8527450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants.
    Fahmy K; Jäger F; Beck M; Zvyaga TA; Sakmar TP; Siebert F
    Proc Natl Acad Sci U S A; 1993 Nov; 90(21):10206-10. PubMed ID: 7901852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water structural changes in lumirhodopsin, metarhodopsin I, and metarhodopsin II upon photolysis of bovine rhodopsin: analysis by Fourier transform infrared spectroscopy.
    Maeda A; Ohkita YJ; Sasaki J; Shichida Y; Yoshizawa T
    Biochemistry; 1993 Nov; 32(45):12033-8. PubMed ID: 8218280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural comparison of metarhodopsin II, metarhodopsin III, and opsin based on kinetic analysis of Fourier transform infrared difference spectra.
    Klinger AL; Braiman MS
    Biophys J; 1992 Nov; 63(5):1244-55. PubMed ID: 1477276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fourier transform infrared difference spectroscopy of rhodopsin mutants: light activation of rhodopsin causes hydrogen-bonding change in residue aspartic acid-83 during meta II formation.
    Rath P; DeCaluwé LL; Bovee-Geurts PH; DeGrip WJ; Rothschild KJ
    Biochemistry; 1993 Oct; 32(39):10277-82. PubMed ID: 8399169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural changes in lumirhodopsin and metarhodopsin I studied by their photoreactions at 77 K.
    Furutani Y; Kandori H; Shichida Y
    Biochemistry; 2003 Jul; 42(28):8494-500. PubMed ID: 12859195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fourier transform infrared spectroscopy indicates a major conformational rearrangement in the activation of rhodopsin.
    Garcia-Quintana D; Francesch A; Garriga P; de Lera AR; Padrós E; Manyosa J
    Biophys J; 1995 Sep; 69(3):1077-82. PubMed ID: 8519961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fourier transform infrared studies of active-site-methylated rhodopsin. Implications for chromophore-protein interaction, transducin activation, and the reaction pathway.
    Ganter UM; Longstaff C; Pajares MA; Rando RR; Siebert F
    Biophys J; 1991 Mar; 59(3):640-4. PubMed ID: 2049524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared studies of octopus rhodopsin. Existence of a long-lived intermediate and the states of the carboxylic group of Asp-81 in rhodopsin and its photoproducts.
    Masuda S; Morita EH; Tasumi M; Iwasa T; Tsuda M
    FEBS Lett; 1993 Feb; 317(3):223-7. PubMed ID: 8425608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of the 9-methyl group of retinal inhibits signal transduction in the visual process. A Fourier transform infrared and biochemical investigation.
    Ganter UM; Schmid ED; Perez-Sala D; Rando RR; Siebert F
    Biochemistry; 1989 Jul; 28(14):5954-62. PubMed ID: 2505843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing intramolecular orientations in rhodopsin and metarhodopsin II by polarized infrared difference spectroscopy.
    DeLange F; Bovee-Geurts PH; Pistorius AM; Rothschild KJ; DeGrip WJ
    Biochemistry; 1999 Oct; 38(40):13200-9. PubMed ID: 10529192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural changes in the peptide backbone in complex formation between activated rhodopsin and transducin studied by FTIR spectroscopy.
    Nishimura S; Sasaki J; Kandori H; Matsuda T; Fukada Y; Maeda A
    Biochemistry; 1996 Oct; 35(41):13267-71. PubMed ID: 8873590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Room temperature trapping of rhodopsin photointermediates.
    Sikora S; Little AS; Dewey TG
    Biochemistry; 1994 Apr; 33(15):4454-9. PubMed ID: 8161500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for the specific interaction of a lipid molecule with rhodopsin which is altered in the transition to the active state metarhodopsin II.
    Beck M; Siebert F; Sakmar TP
    FEBS Lett; 1998 Oct; 436(3):304-8. PubMed ID: 9801137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational similarities in the beta-ionone ring region of the rhodopsin chromophore in its ground state and after photoactivation to the metarhodopsin-I intermediate.
    Spooner PJ; Sharples JM; Goodall SC; Seedorf H; Verhoeven MA; Lugtenburg J; Bovee-Geurts PH; DeGrip WJ; Watts A
    Biochemistry; 2003 Nov; 42(46):13371-8. PubMed ID: 14621981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in structure of the chromophore in the photochemical process of bovine rhodopsin as revealed by FTIR spectroscopy for hydrogen out-of-plane vibrations.
    Ohkita YJ; Sasaki J; Maeda A; Yoshizawa T; Groesbeek M; Verdegem P; Lugtenburg J
    Biophys Chem; 1995; 56(1-2):71-8. PubMed ID: 7662871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carboxyl group involvement in the meta I and meta II stages in rhodopsin bleaching. A Fourier transform infrared spectroscopic study.
    de Grip WJ; Gillespie J; Rothschild KJ
    Biochim Biophys Acta; 1985 Aug; 809(1):97-106. PubMed ID: 2992584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fourier transform infrared spectroscopic investigation of rhodopsin structure and its comparison with bacteriorhodopsin.
    Haris PI; Coke M; Chapman D
    Biochim Biophys Acta; 1989 Apr; 995(2):160-7. PubMed ID: 2539198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linkage between the intramembrane H-bond network around aspartic acid 83 and the cytosolic environment of helix 8 in photoactivated rhodopsin.
    Lehmann N; Alexiev U; Fahmy K
    J Mol Biol; 2007 Mar; 366(4):1129-41. PubMed ID: 17196983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.