BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 1508987)

  • 1. Small acidic peptides from wheat germ chromatin. II. Regulatory activity in specific transcription systems reconstituted in vitro.
    Castigli E; Mancinelli L; Franceschini M; Gianfranceschi GL; Bramucci M; Miano A; Amici D
    Physiol Chem Phys Med NMR; 1992; 24(2):109-17. PubMed ID: 1508987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small acidic peptides from wheat germ chromatin. I. Isolation and biochemical characterization.
    Mancinelli L; Castigli E; Qualadrucci P; Gianfranceschi GL; Bramucci M; Miano A; Amici D
    Physiol Chem Phys Med NMR; 1992; 24(2):97-107. PubMed ID: 1508994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of small phosphorylated peptides controlling transcription "in vitro" from trout testis chromatin DNA.
    Coderoni S; Miano A; Barra D; Bramucci M; Felici F; Paparelli M; Amici D; Gianfranceschi GL
    Physiol Chem Phys Med NMR; 1988; 20(2):91-108. PubMed ID: 3065801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of the DNA conformation on the rate of NtrC activated transcription of Escherichia coli RNA polymerase.sigma(54) holoenzyme.
    Schulz A; Langowski J; Rippe K
    J Mol Biol; 2000 Jul; 300(4):709-25. PubMed ID: 10891265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of regulation of transcription initiation by ppGpp. II. Models for positive control based on properties of RNAP mutants and competition for RNAP.
    Barker MM; Gaal T; Gourse RL
    J Mol Biol; 2001 Jan; 305(4):689-702. PubMed ID: 11162085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Escherichia coli RNA polymerase defective in transcription due to its overproduction of abortive initiation products.
    Jin DJ; Turnbough CL
    J Mol Biol; 1994 Feb; 236(1):72-80. PubMed ID: 7508986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low molecular weight peptide from calf's liver mitochondrial DNA: structure and effect on DNA as a template.
    Spena A; Chimenti R; Covello C; De Cicco T; Mazzulla S; Martino G
    Physiol Chem Phys Med NMR; 1995; 27(4):281-91. PubMed ID: 8768784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Design of a DNA-matrix with a specific structure for synthesizing RNA using the polymerase chain reaction].
    Smelkova NV; Elov AA; Shabarova ZA
    Bioorg Khim; 1992 Jan; 18(1):78-84. PubMed ID: 1524586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Col E1 DNA transcription in Escherichia coli RNA-polymerase system in vitro].
    Denisova LIa; Zagrebel'nyi SN; Kileva EV; Pustoshilova NM; Filippov VA
    Mol Biol (Mosk); 1981; 15(4):768-78. PubMed ID: 6268964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro.
    Barker MM; Gaal T; Josaitis CA; Gourse RL
    J Mol Biol; 2001 Jan; 305(4):673-88. PubMed ID: 11162084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA gyrase stimulates transcription.
    Akrigg A; Cook PR
    Nucleic Acids Res; 1980 Feb; 8(4):845-54. PubMed ID: 6253926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulatory activity in transcription systems reconstituted in vitro.
    Ranade SS
    Physiol Chem Phys Med NMR; 1993; 25(3):223-5. PubMed ID: 8115496
    [No Abstract]   [Full Text] [Related]  

  • 13. Binding site of Escherichia coli RNA polymerase to an RNA promoter.
    Pelchat M; Perreault JP
    Biochem Biophys Res Commun; 2004 Jun; 319(2):636-42. PubMed ID: 15178453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of inhibition of DNA transcription in vitro by nitracrine (Ledakrin, C-283).
    Slaska K; Szmigiero L; Jaros-KamiƄska B; Ciesielska E; Gniazdowski M
    Mol Pharmacol; 1979 Jul; 16(1):287-96. PubMed ID: 384208
    [No Abstract]   [Full Text] [Related]  

  • 15. Mechanism of stimulation of chromatin transcription by putrescine: effects on rate of elongation and number of initiation sites utilized.
    Pierce DA; Fausto N
    Biochemistry; 1978 Jan; 17(1):102-9. PubMed ID: 338031
    [No Abstract]   [Full Text] [Related]  

  • 16. Comparison of in vitro chromatin transcription using E. coli RNA polymerase and wheat germ RNA polymerase B.
    Draper KG; Riggsby WS
    Biochim Biophys Acta; 1981 Dec; 656(2):213-9. PubMed ID: 7032597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction of RNA polymerase II from wheat with supercoiled and linear plasmid templates.
    Lilley DM; Houghton M
    Nucleic Acids Res; 1979 Feb; 6(2):507-23. PubMed ID: 370789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription in sea urchin. I. Initiation sites on DNA and chromatin.
    Di Mauro E; Finotti R; Pomponi M
    Exp Cell Res; 1977 Mar; 105(1):207-16. PubMed ID: 320021
    [No Abstract]   [Full Text] [Related]  

  • 19. Isolation of bacterial and bacteriophage RNA polymerases and their use in synthesis of RNA in vitro.
    Chamberlin M; Kingston R; Gilman M; Wiggs J; deVera A
    Methods Enzymol; 1983; 101():540-68. PubMed ID: 6350819
    [No Abstract]   [Full Text] [Related]  

  • 20. Studies on sex-organ development. Changes in chromatin structure during spermatogenesis in maturing rooster testis as demonstrated by the initiation pattern of ribonucleic acid synthesis in vitro.
    Mezquita C; Teng CS
    Biochem J; 1978 Feb; 170(2):203-10. PubMed ID: 346018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.