These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 15090078)
1. Predicting co-complexed protein pairs using genomic and proteomic data integration. Zhang LV; Wong SL; King OD; Roth FP BMC Bioinformatics; 2004 Apr; 5():38. PubMed ID: 15090078 [TBL] [Abstract][Full Text] [Related]
2. A computational approach for ordering signal transduction pathway components from genomics and proteomics Data. Liu Y; Zhao H BMC Bioinformatics; 2004 Oct; 5():158. PubMed ID: 15504238 [TBL] [Abstract][Full Text] [Related]
3. AVID: an integrative framework for discovering functional relationships among proteins. Jiang T; Keating AE BMC Bioinformatics; 2005 Jun; 6():136. PubMed ID: 15929793 [TBL] [Abstract][Full Text] [Related]
4. A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality. Hart GT; Lee I; Marcotte ER BMC Bioinformatics; 2007 Jul; 8():236. PubMed ID: 17605818 [TBL] [Abstract][Full Text] [Related]
5. Probabilistic prediction and ranking of human protein-protein interactions. Scott MS; Barton GJ BMC Bioinformatics; 2007 Jul; 8():239. PubMed ID: 17615067 [TBL] [Abstract][Full Text] [Related]
6. Improving the performance of an SVM-based method for predicting protein-protein interactions. Dohkan S; Koike A; Takagi T In Silico Biol; 2006; 6(6):515-29. PubMed ID: 17518762 [TBL] [Abstract][Full Text] [Related]
8. PreSPI: a domain combination based prediction system for protein-protein interaction. Han DS; Kim HS; Jang WH; Lee SD; Suh JK Nucleic Acids Res; 2004; 32(21):6312-20. PubMed ID: 15576357 [TBL] [Abstract][Full Text] [Related]
9. Analyzing yeast protein-protein interaction data obtained from different sources. Bader GD; Hogue CW Nat Biotechnol; 2002 Oct; 20(10):991-7. PubMed ID: 12355115 [TBL] [Abstract][Full Text] [Related]
10. Can simple codon pair usage predict protein-protein interaction? Zhou Y; Zhou YS; He F; Song J; Zhang Z Mol Biosyst; 2012 Apr; 8(5):1396-404. PubMed ID: 22392100 [TBL] [Abstract][Full Text] [Related]
11. A probabilistic graph-theoretic approach to integrate multiple predictions for the protein-protein subnetwork prediction challenge. Chua HN; Hugo W; Liu G; Li X; Wong L; Ng SK Ann N Y Acad Sci; 2009 Mar; 1158():224-33. PubMed ID: 19348644 [TBL] [Abstract][Full Text] [Related]
12. Computational analysis of the yeast proteome: understanding and exploiting functional specificity in genomic data. Huttenhower C; Myers CL; Hibbs MA; Troyanskaya OG Methods Mol Biol; 2009; 548():273-93. PubMed ID: 19521830 [TBL] [Abstract][Full Text] [Related]
13. Predicting quantitative genetic interactions by means of sequential matrix approximation. Järvinen AP; Hiissa J; Elo LL; Aittokallio T PLoS One; 2008 Sep; 3(9):e3284. PubMed ID: 18818762 [TBL] [Abstract][Full Text] [Related]
14. Detecting disease genes based on semi-supervised learning and protein-protein interaction networks. Nguyen TP; Ho TB Artif Intell Med; 2012 Jan; 54(1):63-71. PubMed ID: 22000346 [TBL] [Abstract][Full Text] [Related]
15. Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Nabieva E; Jim K; Agarwal A; Chazelle B; Singh M Bioinformatics; 2005 Jun; 21 Suppl 1():i302-10. PubMed ID: 15961472 [TBL] [Abstract][Full Text] [Related]
16. InSite: a computational method for identifying protein-protein interaction binding sites on a proteome-wide scale. Wang H; Segal E; Ben-Hur A; Li QR; Vidal M; Koller D Genome Biol; 2007; 8(9):R192. PubMed ID: 17868464 [TBL] [Abstract][Full Text] [Related]