BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 15090140)

  • 1. Inhibitor focusing: direct selection of drug targets from proteomes using activity-based probes.
    Nomanbhoy TK; Rosenblum J; Aban A; Burbaum JJ
    Assay Drug Dev Technol; 2003 Feb; 1(1 Pt 2):137-46. PubMed ID: 15090140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of molecular computer modeling in anticancer drug development.
    Geromichalos GD
    J BUON; 2007 Sep; 12 Suppl 1():S101-18. PubMed ID: 17935268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-based maximal affinity model predicts small-molecule druggability.
    Cheng AC; Coleman RG; Smyth KT; Cao Q; Soulard P; Caffrey DR; Salzberg AC; Huang ES
    Nat Biotechnol; 2007 Jan; 25(1):71-5. PubMed ID: 17211405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Challenges in modern drug discovery: a case study of boceprevir, an HCV protease inhibitor for the treatment of hepatitis C virus infection.
    Njoroge FG; Chen KX; Shih NY; Piwinski JJ
    Acc Chem Res; 2008 Jan; 41(1):50-9. PubMed ID: 18193821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new strategy for improved secondary screening and lead optimization using high-resolution SPR characterization of compound-target interactions.
    Huber W
    J Mol Recognit; 2005; 18(4):273-81. PubMed ID: 15997470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physics-based methods for studying protein-ligand interactions.
    Huang N; Jacobson MP
    Curr Opin Drug Discov Devel; 2007 May; 10(3):325-31. PubMed ID: 17554859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Domain-based small molecule binding site annotation.
    Snyder KA; Feldman HJ; Dumontier M; Salama JJ; Hogue CW
    BMC Bioinformatics; 2006 Mar; 7():152. PubMed ID: 16545112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug target deconvolution by chemical proteomics.
    Raida M
    Curr Opin Chem Biol; 2011 Aug; 15(4):570-5. PubMed ID: 21763176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tagging and detection strategies for activity-based proteomics.
    Sadaghiani AM; Verhelst SH; Bogyo M
    Curr Opin Chem Biol; 2007 Feb; 11(1):20-8. PubMed ID: 17174138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery, SAR, and X-ray structure of novel biaryl-based dipeptidyl peptidase IV inhibitors.
    Qiao L; Baumann CA; Crysler CS; Ninan NS; Abad MC; Spurlino JC; Desjarlais RL; Kervinen J; Neeper MP; Bayoumy SS; Williams R; Deckman IC; Dasgupta M; Reed RL; Huebert ND; Tomczuk BE; Moriarty KJ
    Bioorg Med Chem Lett; 2006 Jan; 16(1):123-8. PubMed ID: 16236500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dipeptide proline diphenyl phosphonates are potent, irreversible inhibitors of seprase (FAPalpha).
    Gilmore BF; Lynas JF; Scott CJ; McGoohan C; Martin L; Walker B
    Biochem Biophys Res Commun; 2006 Jul; 346(2):436-46. PubMed ID: 16769036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico fragment-based discovery of DPP-IV S1 pocket binders.
    Rummey C; Nordhoff S; Thiemann M; Metz G
    Bioorg Med Chem Lett; 2006 Mar; 16(5):1405-9. PubMed ID: 16321524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemocavity: specific concavity in protein reserved for the binding of biologically functional small molecules.
    Soga S; Shirai H; Kobori M; Hirayama N
    J Chem Inf Model; 2008 Aug; 48(8):1679-85. PubMed ID: 18642867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A large-scale computational approach to drug repositioning.
    Li YY; An J; Jones SJ
    Genome Inform; 2006; 17(2):239-47. PubMed ID: 17503396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Strategy of molecular design of drugs: the unification of macro-properties and micro-structures of a molecule].
    Guo ZR
    Yao Xue Xue Bao; 2008 Mar; 43(3):227-33. PubMed ID: 18630256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of Src tyrosine kinase inhibition with a new class of potent and selective trisubstituted purine-based compounds.
    Dalgarno D; Stehle T; Narula S; Schelling P; van Schravendijk MR; Adams S; Andrade L; Keats J; Ram M; Jin L; Grossman T; MacNeil I; Metcalf C; Shakespeare W; Wang Y; Keenan T; Sundaramoorthi R; Bohacek R; Weigele M; Sawyer T
    Chem Biol Drug Des; 2006 Jan; 67(1):46-57. PubMed ID: 16492148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rational approach to maximize success rate in target discovery.
    Schneider M
    Arch Pharm (Weinheim); 2004 Dec; 337(12):625-33. PubMed ID: 15597396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Informatics and modeling challenges in fragment-based drug discovery.
    Hubbard RE; Chen I; Davis B
    Curr Opin Drug Discov Devel; 2007 May; 10(3):289-97. PubMed ID: 17554855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based discovery of nonpeptidic small organic compounds to block the T cell response to myelin basic protein.
    Koehler NK; Yang CY; Varady J; Lu Y; Wu XW; Liu M; Yin D; Bartels M; Xu BY; Roller PP; Long YQ; Li P; Kattah M; Cohn ML; Moran K; Tilley E; Richert JR; Wang S
    J Med Chem; 2004 Oct; 47(21):4989-97. PubMed ID: 15456243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.