These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 15090680)

  • 21. Blood flow multiscale phenomena.
    Agić A; Mijović B; Nikolić T
    Coll Antropol; 2007 Jun; 31(2):523-9. PubMed ID: 17847933
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro measurement of particle margination in the microchannel flow: effect of varying hematocrit.
    Fitzgibbon S; Spann AP; Qi QM; Shaqfeh ESG
    Biophys J; 2015 May; 108(10):2601-2608. PubMed ID: 25992738
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transport phenomena in pulsating post-stenotic vortex flow in arteries. An interactive concept of fluid-dynamic, haemorheological and biochemical processes in white thrombus formation.
    Schmid-Schönbein H; Wurzinger LJ
    Nouv Rev Fr Hematol (1978); 1986; 28(5):257-67. PubMed ID: 3543838
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Blood flow and macromolecular transport in complex blood vessels.
    Hong J; Wei L; Fu C; Tan W
    Clin Biomech (Bristol, Avon); 2008; 23 Suppl 1():S125-9. PubMed ID: 17767985
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neonatal aortic arch hemodynamics and perfusion during cardiopulmonary bypass.
    Pekkan K; Dur O; Sundareswaran K; Kanter K; Fogel M; Yoganathan A; Undar A
    J Biomech Eng; 2008 Dec; 130(6):061012. PubMed ID: 19045541
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of pulsatile flow on LDL transport in the arterial wall.
    Sun N; Wood NB; Hughes AD; Thom SA; Xu XY
    Ann Biomed Eng; 2007 Oct; 35(10):1782-90. PubMed ID: 17629792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The electrical impedance of pulsatile blood flowing through rigid tubes: a theoretical investigation.
    Gaw RL; Cornish BH; Thomas BJ
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):721-7. PubMed ID: 18270009
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development and validation of a computational fluid dynamics methodology for simulation of pulsatile left ventricular assist devices.
    Medvitz RB; Kreider JW; Manning KB; Fontaine AA; Deutsch S; Paterson EG
    ASAIO J; 2007; 53(2):122-31. PubMed ID: 17413548
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Endothelial nitric oxide synthase and calcium production in arterial geometries: an integrated fluid mechanics/cell model.
    Comerford A; Plank MJ; David T
    J Biomech Eng; 2008 Feb; 130(1):011010. PubMed ID: 18298186
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational simulation of intracoronary flow based on real coronary geometry.
    Boutsianis E; Dave H; Frauenfelder T; Poulikakos D; Wildermuth S; Turina M; Ventikos Y; Zund G
    Eur J Cardiothorac Surg; 2004 Aug; 26(2):248-56. PubMed ID: 15296879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2004 Dec; 37(12):1899-911. PubMed ID: 15519598
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Platelet dynamics in three-dimensional simulation of whole blood.
    Vahidkhah K; Diamond SL; Bagchi P
    Biophys J; 2014 Jun; 106(11):2529-40. PubMed ID: 24896133
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flow-dependent concentration polarization of plasma proteins at the luminal surface of a semipermeable membrane.
    Naiki T; Karino T
    Biorheology; 1999; 36(3):243-56. PubMed ID: 10690271
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of celiac and renal artery outflows on near-wall velocities in the porcine iliac arteries.
    Clingan PA; Friedman MH
    Ann Biomed Eng; 2000 Mar; 28(3):302-8. PubMed ID: 10784094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combined effects of pulsatile flow and dynamic curvature on wall shear stress in a coronary artery bifurcation model.
    Pivkin IV; Richardson PD; Laidlaw DH; Karniadakis GE
    J Biomech; 2005 Jun; 38(6):1283-90. PubMed ID: 15863113
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling pulsatile flow in aortic aneurysms: effect of non-Newtonian properties of blood.
    Khanafer KM; Gadhoke P; Berguer R; Bull JL
    Biorheology; 2006; 43(5):661-79. PubMed ID: 17047283
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Numerical simulation of local blood flow in the carotid and cerebral arteries under altered gravity.
    Kim CS; Kiris C; Kwak D; David T
    J Biomech Eng; 2006 Apr; 128(2):194-202. PubMed ID: 16524330
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Developing pulsatile flow in a deployed coronary stent.
    Rajamohan D; Banerjee RK; Back LH; Ibrahim AA; Jog MA
    J Biomech Eng; 2006 Jun; 128(3):347-59. PubMed ID: 16706584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Disturbed flow promotes deposition of leucocytes from flowing whole blood in a model of a damaged vessel wall.
    Skilbeck CA; Walker PG; David T; Nash GB
    Br J Haematol; 2004 Aug; 126(3):418-27. PubMed ID: 15257716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model.
    Koshiba N; Ando J; Chen X; Hisada T
    J Biomech Eng; 2007 Jun; 129(3):374-85. PubMed ID: 17536904
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.