These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 15090680)

  • 41. DPIV prediction of flow induced platelet activation-comparison to numerical predictions.
    Raz S; Einav S; Alemu Y; Bluestein D
    Ann Biomed Eng; 2007 Apr; 35(4):493-504. PubMed ID: 17286206
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Numerical simulations of pulsatile flow in an end-to-side anastomosis model.
    Shaik E; Hoffmann KA; Dietiker JF
    Mol Cell Biomech; 2007 Mar; 4(1):41-53. PubMed ID: 17879770
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Numerical simulations of pulsatile blood flow using a new constitutive model.
    Fang J; Owens RG
    Biorheology; 2006; 43(5):637-60. PubMed ID: 17047282
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Validation of numerical simulation with PIV measurements for two anastomosis models.
    Zhang JM; Chua LP; Ghista DN; Zhou TM; Tan YS
    Med Eng Phys; 2008 Mar; 30(2):226-47. PubMed ID: 17466565
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Boundary conditions in simulation of stenosed coronary arteries.
    Mohammadi H; Bahramian F
    Cardiovasc Eng; 2009 Sep; 9(3):83-91. PubMed ID: 19688262
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Near-wall deposition probability of blood elements as a new hemodynamic wall parameter.
    Kim MC; Nam JH; Lee CS
    Ann Biomed Eng; 2006 Jun; 34(6):958-70. PubMed ID: 16783652
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparative velocity investigations in cerebral arteries and aneurysms: 3D phase-contrast MR angiography, laser Doppler velocimetry and computational fluid dynamics.
    Hollnagel DI; Summers PE; Poulikakos D; Kollias SS
    NMR Biomed; 2009 Oct; 22(8):795-808. PubMed ID: 19412933
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Use of the DiaMed Impact R to test platelet function in stored platelet concentrates.
    Morrison A; Hornsey VS; Prowse CV; Macgregor IR
    Vox Sang; 2007 Aug; 93(2):166-72. PubMed ID: 17683361
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Numerical assessment of the impact of a flow wire on its velocity measurements.
    Hillewaert W; Courtens K; McLaughlin M; Wauters J; Wilmer A; Bijnens B; Claus P; Verdonck P; Devos P; Segers P
    Ultrasound Med Biol; 2006 Jul; 32(7):1025-36. PubMed ID: 16829316
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Validation of a fluid-structure interaction numerical model for predicting flow transients in arteries.
    Kanyanta V; Ivankovic A; Karac A
    J Biomech; 2009 Aug; 42(11):1705-12. PubMed ID: 19482285
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Non spiral and spiral (helical) flow patterns in stenoses. In vitro observations using spin and gradient echo magnetic resonance imaging (MRI) and computational fluid dynamic modeling.
    Stonebridge PA; Buckley C; Thompson A; Dick J; Hunter G; Chudek JA; Houston JG; Belch JJ
    Int Angiol; 2004 Sep; 23(3):276-83. PubMed ID: 15765044
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Assessment of arterial stenosis in a flow model with power Doppler angiography: accuracy and observations on blood echogenicity.
    Cloutier G; Qin Z; Garcia D; Soulez G; Oliva V; Durand LG
    Ultrasound Med Biol; 2000 Nov; 26(9):1489-501. PubMed ID: 11179623
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Flow studies in three-dimensional aorto-right coronary bypass graft system.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    J Med Eng Technol; 2006; 30(5):269-82. PubMed ID: 16980282
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transient lateral transport of platelet-sized particles in flowing blood suspensions.
    Yeh C; Eckstein EC
    Biophys J; 1994 May; 66(5):1706-16. PubMed ID: 8061219
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Platelets enhance CD4+ lymphocyte adhesion to extracellular matrix under flow conditions: role of platelet aggregation, integrins, and non-integrin receptors.
    Solpov A; Shenkman B; Vitkovsky Y; Brill G; Koltakov A; Farzam N; Varon D; Bank I; Savion N
    Thromb Haemost; 2006 May; 95(5):815-21. PubMed ID: 16676073
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantifying Platelet Margination in Diabetic Blood Flow.
    Chang HY; Yazdani A; Li X; Douglas KAA; Mantzoros CS; Karniadakis GE
    Biophys J; 2018 Oct; 115(7):1371-1382. PubMed ID: 30224049
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hemodynamics of the mitral valve under edge-to-edge repair: an in vitro steady flow study.
    Shi L; He Z
    J Biomech Eng; 2009 May; 131(5):051010. PubMed ID: 19388780
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Parametric geometry exploration of the human carotid artery bifurcation.
    Bressloff NW
    J Biomech; 2007; 40(11):2483-91. PubMed ID: 17196211
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A model of thrombin inactivation in heparinized and nonheparinized tubes with consequences for thrombus formation.
    Basmadjian D; Sefton MV
    J Biomed Mater Res; 1986; 20(5):633-51. PubMed ID: 3711137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.