BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 15091364)

  • 1. Lead phosphate formation in soils.
    Cotter-Howells J
    Environ Pollut; 1996; 93(1):9-16. PubMed ID: 15091364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pb remobilization by bacterially mediated dissolution of pyromorphite Pb5(PO4)3Cl in presence of phosphate-solubilizing Pseudomonas putida.
    Topolska J; Latowski D; Kaschabek S; Manecki M; Merkel BJ; Rakovan J
    Environ Sci Pollut Res Int; 2014 Jan; 21(2):1079-89. PubMed ID: 23872890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lead mineral transformation by fungi.
    Sayer JA; Cotter-Howells JD; Watson C; Hillier S; Gadd GM
    Curr Biol; 1999 Jul; 9(13):691-4. PubMed ID: 10395543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solubilization of Pb-bearing apatite Pb
    Drewniak Ł; Skłodowska A; Manecki M; Bajda T
    Chemosphere; 2017 Mar; 171():302-307. PubMed ID: 28027474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui, China.
    Zhu YG; Chen SB; Yang JC
    Environ Int; 2004 May; 30(3):351-6. PubMed ID: 14987865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphate application to firing range soils for Pb immobilization: the unclear role of phosphate.
    Chrysochoou M; Dermatas D; Grubb DG
    J Hazard Mater; 2007 Jun; 144(1-2):1-14. PubMed ID: 17360110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation of galena to pyromorphite produces bioavailable sulfur for neutrophilic chemoautotrophy.
    Walczak AB; Kafantaris FA; Druschel GK; Yee N; Young LY
    Geobiology; 2016 Nov; 14(6):599-606. PubMed ID: 27418402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphate treatment of firing range soils: lead fixation or phosphorus release?
    Dermatas D; Chrysochoou M; Grubb DG; Xu X
    J Environ Qual; 2008; 37(1):47-56. PubMed ID: 18178877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transforming cerussite to pyromorphite by immobilising Pb(II) using hydroxyapatite and Pseudomonas rhodesiae.
    Li J; Tian X; Bai R; Xiao X; Yang F; Zhao F
    Chemosphere; 2022 Jan; 287(Pt 2):132235. PubMed ID: 34826926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Point of zero charge: Role in pyromorphite formation and bioaccessibility of lead and arsenic in phosphate amended soils.
    Karna RR; Noerpel MR; Luxton TP; Scheckel KG
    Soil Syst; 2018; 2(2):22. PubMed ID: 30714024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impacts of phosphate amendments on lead biogeochemistry at a contaminated site.
    Cao X; Ma LQ; Chen M; Singh SP; Harris WG
    Environ Sci Technol; 2002 Dec; 36(24):5296-304. PubMed ID: 12521153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amending soils with phosphate as means to mitigate soil lead hazard: a critical review of the state of the science.
    Scheckel KG; Diamond GL; Burgess MF; Klotzbach JM; Maddaloni M; Miller BW; Partridge CR; Serda SM
    J Toxicol Environ Health B Crit Rev; 2013; 16(6):337-80. PubMed ID: 24151967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of chloropyromorphite in a lead-contaminated soil amended with hydroxyapatite.
    Ryan JA; Zhang P; Hesterberg D; Chou J; Sayers DE
    Environ Sci Technol; 2001 Sep; 35(18):3798-803. PubMed ID: 11783662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ formation of pyromorphite is not required for the reduction of in vivo pb relative bioavailability in contaminated soils.
    Juhasz AL; Gancarz D; Herde C; McClure S; Scheckel KG; Smith E
    Environ Sci Technol; 2014 Jun; 48(12):7002-9. PubMed ID: 24823360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of chlorine and phosphorus on water soluble and exchangeable lead in a soil contaminated by lead and zinc mining tailings].
    Wang BL; Xie ZM; Li J; Wu WH; Jiang JT
    Huan Jing Ke Xue; 2008 Jun; 29(6):1724-8. PubMed ID: 18763530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro-x-ray fluorescence, micro-x-ray absorption spectroscopy, and micro-x-ray diffraction investigation of lead speciation after the addition of different phosphorus amendments to a smelter-contaminated soil.
    Baker LR; Pierzynski GM; Hettiarachchi GM; Scheckel KG; Newville M
    J Environ Qual; 2014 Mar; 43(2):488-97. PubMed ID: 25602650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contaminant bioavailability in soils, sediments, and aquatic environments.
    Traina SJ; Laperche V
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):3365-71. PubMed ID: 10097045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic acids inhibit the formation of pyromorphite and Zn-phosphate in phosphorous amended Pb- and Zn-contaminated soil.
    Debela F; Arocena JM; Thring RW; Whitcombe T
    J Environ Manage; 2013 Feb; 116():156-62. PubMed ID: 23313859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Petrographic and spectroscopic characterization of phosphate-stabilized mine tailings from Leadville, Colorado.
    Eusden JD; Gallagher L; Eighmy TT; Crannell BS; Krzanowski JR; Butler LG; Cartledge FK; Emery EF; Shaw EL; Francis CA
    Waste Manag; 2002; 22(2):117-35. PubMed ID: 12004827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lead transformation to pyromorphite by fungi.
    Rhee YJ; Hillier S; Gadd GM
    Curr Biol; 2012 Feb; 22(3):237-41. PubMed ID: 22245002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.