These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 15091708)

  • 1. Iron content and its relations to the sulphur and titanium contents of epiphytic and terricolous lichens and pine bark in Finland.
    Takala K; Olkkonen H; Salminen R
    Environ Pollut; 1994; 84(2):131-8. PubMed ID: 15091708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulphur isotope composition of epiphytic and terricolous lichens and pine bark in Finland.
    Takala K; Olkkonen H; Krouse HR
    Environ Pollut; 1991; 69(4):337-48. PubMed ID: 15092153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The epiphytic lichen hypogymnia physodes as a biomonitor of atmospheric nitrogen and sulphur deposition in Norway.
    Bruteig IE
    Environ Monit Assess; 1993 May; 26(1):27-47. PubMed ID: 24225896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HPLC Fingerprint Analysis with the Antioxidant and Cytotoxic Activities of Selected Lichens Combined with the Chemometric Calculations.
    Hawrył A; Hawrył M; Hajnos-Stolarz A; Abramek J; Bogucka-Kocka A; Komsta Ł
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32961727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cd, Fe and Zn content of the epiphytic lichen Hypogymnia physodes in a Finnish suburb.
    Lodenius M; Kumpulainen J
    Sci Total Environ; 1983 Dec; 32(1):81-5. PubMed ID: 6665556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deriving nitrogen critical levels and loads based on the responses of acidophytic lichen communities on boreal urban Pinus sylvestris trunks.
    Manninen S
    Sci Total Environ; 2018 Feb; 613-614():751-762. PubMed ID: 28938217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal homeostasis in Hypogymnia physodes is controlled by lichen substances.
    Hauck M
    Environ Pollut; 2008 May; 153(2):304-8. PubMed ID: 17964034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secondary metabolites of the lichen Hypogymnia physodes (L.) Nyl. and their presence in spruce (Picea abies (L.) H. Karst.) bark.
    Latkowska E; Bober B; Chrapusta E; Adamski M; Kaminski A; Bialczyk J
    Phytochemistry; 2015 Oct; 118():116-23. PubMed ID: 26342621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The multi-element content of the lichen Parmelia sulcata, soil, and oak bark in relation to acidification and climate.
    Purvis OW; Dubbin W; Chimonides PD; Jones GC; Read H
    Sci Total Environ; 2008 Feb; 390(2-3):558-68. PubMed ID: 18045659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relevance of element content of bark for the distribution of epiphytic lichens in a montane spruce forest affected by forest dieback.
    Hauck M; Jung R; Runge M
    Environ Pollut; 2001; 112(2):221-7. PubMed ID: 11234539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metal accumulation in Pseudevernia furfuracea (L.) Zopf from the Karabük iron-steel factory in Karabük, Turkey.
    Cansaran-Duman D; Atakol O; Atasoy I; Kahya D; Aras S; Beyaztaş T
    Z Naturforsch C J Biosci; 2009; 64(9-10):717-23. PubMed ID: 19957442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Trait variability in ontogenesis of epiphytic lichen Hypogymnia physodes (L.) Nyl].
    Suetina IuG; Glotov NV
    Ontogenez; 2014; 45(3):201-6. PubMed ID: 25720279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of urban environment pollution based on the accumulation of macro- and trace elements in epiphytic lichens.
    Parzych A; Astel A; Zduńczyk A; Surowiec T
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(4):297-308. PubMed ID: 26745547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraction of arsenic compounds from lichens.
    Mrak T; Slejkovec Z; Jeran Z
    Talanta; 2006 Mar; 69(1):251-8. PubMed ID: 18970562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epiphytic lichens as biomonitors of atmospheric pollution in Slovenian forests.
    Jeran Z; Mrak T; Jaćimović R; Batic F; Kastelec D; Mavsar R; Simoncic P
    Environ Pollut; 2007 Mar; 146(2):324-31. PubMed ID: 16720065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-element including rare earth content of lichens, bark, soils, and waste following industrial closure.
    Rusu AM; Chimonides PD; Jones GC; Garcia-Sanchez R; Purvis OW
    Environ Sci Technol; 2006 Aug; 40(15):4599-604. PubMed ID: 16913112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological adaptations in the lichens Peltigera rufescens and Cladina arbuscula var. mitis, and the moss Racomitrium lanuginosum to copper-rich substrate.
    Backor M; Klejdus B; Vantová I; Kovácik J
    Chemosphere; 2009 Sep; 76(10):1340-3. PubMed ID: 19595434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Levels of selected trace elements in Scots pine (Pinus sylvestris L.), silver birch (Betula pendula L.), and Norway maple (Acer platanoides L.) in an urbanized environment.
    Kosiorek M; Modrzewska B; Wyszkowski M
    Environ Monit Assess; 2016 Oct; 188(10):598. PubMed ID: 27696092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic accumulation and thiol status in lichens exposed to As(V) in controlled conditions.
    Mrak T; Jeran Z; Batic F; di Toppi LS
    Biometals; 2010 Apr; 23(2):207-19. PubMed ID: 19936941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elemental chemistry of four lichen species from the Apostle Islands, Wisconsin, 1987, 1995 and 2001.
    Bennett JP; Wetmore CM
    Sci Total Environ; 2003 Apr; 305(1-3):77-86. PubMed ID: 12670759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.