These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 15091884)

  • 1. Effects of acidic fog on seedlings of Pinus ponderosa and Abies concolor: foliar injury, physiological and biochemical responses.
    Takemoto BK; Bytnerowicz A
    Environ Pollut; 1993; 79(3):235-41. PubMed ID: 15091884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of long-term ozone exposure and drought on the photosynthetic capacity of ponderosa pine (Pinus ponderosa Laws.).
    Beyers JL; Riechers GH; Temple PJ
    New Phytol; 1992 Sep; 122(1):81-90. PubMed ID: 33874044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloroplastic responses of ponderosa pine (Pinus ponderosa) seedlings to ozone exposure.
    Anderson PD; Palmer B; Houpis JL; Smith MK; Pushnik JC
    Environ Int; 2003 Jun; 29(2-3):407-13. PubMed ID: 12676234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermotolerance and heat stress responses of Douglas-fir and ponderosa pine seedling populations from contrasting climates.
    Marias DE; Meinzer FC; Woodruff DR; McCulloh KA
    Tree Physiol; 2017 Mar; 37(3):301-315. PubMed ID: 28008081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photosynthetic phenological variation may promote coexistence among co-dominant tree species in a Madrean sky island mixed conifer forest.
    Potts DL; Minor RL; Braun Z; Barron-Gafford GA
    Tree Physiol; 2017 Sep; 37(9):1229-1238. PubMed ID: 28938055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blue wild-rye grass competition increases the effect of ozone on ponderosa pine seedlings.
    Andersen CP; Hogsett WE; Plocher M; Rodecap K; Lee EH
    Tree Physiol; 2001 Mar; 21(5):319-27. PubMed ID: 11262923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of photochemical smog and mineral nutrition on ponderosa pine seedlings.
    Bytnerowicz A; Poth M; Takemoto BK
    Environ Pollut; 1990; 67(3):233-48. PubMed ID: 15092211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accentuation of gas exchange gradients in flushes of ponderosa pine exposed to ozone.
    Clark CS; Weber JA; Lee EH; Hogsett WE
    Tree Physiol; 1995 Mar; 15(3):181-9. PubMed ID: 14965974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterns of induced and constitutive monoterpene production in conifer needles in relation to insect herbivory.
    Litvak ME; Monson RK
    Oecologia; 1998 May; 114(4):531-540. PubMed ID: 28307902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stomatal conductance alone does not explain the decline in foliar photosynthetic rates with increasing tree age and size in Picea abies and Pinus sylvestris.
    Niinemets U
    Tree Physiol; 2002 Jun; 22(8):515-35. PubMed ID: 12045025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Severe leaching of calcium ions from fir needles caused by acid fog.
    Igawa M; Kase T; Satake K; Okochi H
    Environ Pollut; 2002; 119(3):375-82. PubMed ID: 12166671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth and physiological responses of Pinus ponderosa Dougl ex P. Laws. to long-term elevated CO(2) concentrations.
    Surano KA; Daley PF; Houpis JL; Shinn JH; Helms JA; Palassou RJ; Costella MP
    Tree Physiol; 1986 Dec; 2(1_2_3):243-259. PubMed ID: 14975858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the relationships among O(3) uptake, conductance, and photosynthesis in needles of Pinus ponderosa.
    Weber JA; Clark CS; Hogsett WE
    Tree Physiol; 1993 Sep; 13(2):157-72. PubMed ID: 14969893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xylem vulnerability to cavitation in Pseudotsuga menziesii and Pinus ponderosa from contrasting habitats.
    Stout DH; Sala A
    Tree Physiol; 2003 Jan; 23(1):43-50. PubMed ID: 12511303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution.
    Domec JC; Warren JM; Meinzer FC; Brooks JR; Coulombe R
    Oecologia; 2004 Sep; 141(1):7-16. PubMed ID: 15338263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in leaf gas exchange and water relations among species and tree sizes in an Arizona pine-oak forest.
    Kolb TE; Stone JE
    Tree Physiol; 2000 Jan; 20(1):1-12. PubMed ID: 12651521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of soil temperature and elevated atmospheric CO2 concentration on gas exchange, in vivo carboxylation and chlorophyll fluorescence in jack pine and white birch seedlings.
    Zhang S; Dang QL
    Tree Physiol; 2005 May; 25(5):523-31. PubMed ID: 15741153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alteration of foliar flavonoid chemistry induced by enhanced UV-B radiation in field-grown Pinus ponderosa, Quercus rubra and Pseudotsuga menziesii.
    Warren JM; Bassman JH; Mattinson DS; Fellman JK; Edwards GE; Robberecht R
    J Photochem Photobiol B; 2002 Mar; 66(2):125-33. PubMed ID: 11897512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological responses of ponderosa pine in western Montana to thinning, prescribed fire and burning season.
    Sala A; Peters GD; McIntyre LR; Harrington MG
    Tree Physiol; 2005 Mar; 25(3):339-48. PubMed ID: 15631982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon allocation, gas exchange, and needle morphology of Pinus ponderosa genotypes known to differ in growth and survival under imposed drought.
    Cregg BM
    Tree Physiol; 1994; 14(7_9):883-898. PubMed ID: 14967656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.