These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 15092153)

  • 1. Sulphur isotope composition of epiphytic and terricolous lichens and pine bark in Finland.
    Takala K; Olkkonen H; Krouse HR
    Environ Pollut; 1991; 69(4):337-48. PubMed ID: 15092153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron content and its relations to the sulphur and titanium contents of epiphytic and terricolous lichens and pine bark in Finland.
    Takala K; Olkkonen H; Salminen R
    Environ Pollut; 1994; 84(2):131-8. PubMed ID: 15091708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deriving nitrogen critical levels and loads based on the responses of acidophytic lichen communities on boreal urban Pinus sylvestris trunks.
    Manninen S
    Sci Total Environ; 2018 Feb; 613-614():751-762. PubMed ID: 28938217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HPLC Fingerprint Analysis with the Antioxidant and Cytotoxic Activities of Selected Lichens Combined with the Chemometric Calculations.
    Hawrył A; Hawrył M; Hajnos-Stolarz A; Abramek J; Bogucka-Kocka A; Komsta Ł
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32961727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The epiphytic lichen hypogymnia physodes as a biomonitor of atmospheric nitrogen and sulphur deposition in Norway.
    Bruteig IE
    Environ Monit Assess; 1993 May; 26(1):27-47. PubMed ID: 24225896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary metabolites of the lichen Hypogymnia physodes (L.) Nyl. and their presence in spruce (Picea abies (L.) H. Karst.) bark.
    Latkowska E; Bober B; Chrapusta E; Adamski M; Kaminski A; Bialczyk J
    Phytochemistry; 2015 Oct; 118():116-23. PubMed ID: 26342621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Carbon stable isotope composition (delta 13C) of lichen thalli in the forests in the vicinity of the Chernobyl atomic power station].
    Biazrov LG; Gongal'skiĭ KB; Pel'gunova LA; Tiunov AV
    Radiats Biol Radioecol; 2010; 50(1):98-105. PubMed ID: 20297687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infraspecific variability in baseline element composition of the epiphytic lichen Pseudevernia furfuracea in remote areas: implications for biomonitoring of air pollution.
    Incerti G; Cecconi E; Capozzi F; Adamo P; Bargagli R; Benesperi R; Carniel FC; Cristofolini F; Giordano S; Puntillo D; Spagnuolo V; Tretiach M
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8004-8016. PubMed ID: 28132191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological activities of Pseudevernia furfuracea (L.) Zopf extracts and isolation of the active compounds.
    Güvenç A; Küpeli Akkol E; Süntar I; Keleş H; Yıldız S; Calış I
    J Ethnopharmacol; 2012 Dec; 144(3):726-34. PubMed ID: 23107822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variations in sulphur content and stable sulphur isotope composition of vegetation near a SO
    Case JW; Krouse HR
    Oecologia; 1980 Jan; 44(2):248-257. PubMed ID: 28310564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Trait variability in ontogenesis of epiphytic lichen Hypogymnia physodes (L.) Nyl].
    Suetina IuG; Glotov NV
    Ontogenez; 2014; 45(3):201-6. PubMed ID: 25720279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relevance of element content of bark for the distribution of epiphytic lichens in a montane spruce forest affected by forest dieback.
    Hauck M; Jung R; Runge M
    Environ Pollut; 2001; 112(2):221-7. PubMed ID: 11234539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal homeostasis in Hypogymnia physodes is controlled by lichen substances.
    Hauck M
    Environ Pollut; 2008 May; 153(2):304-8. PubMed ID: 17964034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lichens of the Knyszyńska Forest (NE Poland).
    Czeczuga B; Lengiewicz I
    Rocz Akad Med Bialymst; 2001; 46():263-89. PubMed ID: 11780570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Phorophyte specificity and microenvironmental preferences of corticolous lichens in five phorophyte species from premontane forest of Finca Zíngara, Cali, Colombia)].
    Medina ES; Lücking R; Rojas AB
    Rev Biol Trop; 2012 Jun; 60(2):843-56. PubMed ID: 23894950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cd, Fe and Zn content of the epiphytic lichen Hypogymnia physodes in a Finnish suburb.
    Lodenius M; Kumpulainen J
    Sci Total Environ; 1983 Dec; 32(1):81-5. PubMed ID: 6665556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intra-specific variation in the photosynthetic responses of cyanobiont lichens from contrasting habitats.
    Smith EC; Griffiths H; Wood L; Gillon J
    New Phytol; 1998 Feb; 138(2):213-224. PubMed ID: 33863095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extraction of arsenic compounds from lichens.
    Mrak T; Slejkovec Z; Jeran Z
    Talanta; 2006 Mar; 69(1):251-8. PubMed ID: 18970562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Air-quality biomonitoring: assessment of genotoxicity of air pollution in the Province of Kayseri (Central Anatolia) by use of the lichen Pseudevernia furfuracea (L.) Zopf and amplified fragment-length polymorphism markers.
    Vardar C; Basaran E; Cansaran-Duman D; Aras S
    Mutat Res Genet Toxicol Environ Mutagen; 2014 Jan; 759():43-50. PubMed ID: 24361958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lichens as integrating air pollution monitors.
    Jeran Z; Jaćimović R; Batic F; Mavsar R
    Environ Pollut; 2002; 120(1):107-13. PubMed ID: 12199456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.