These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 15092422)
1. Regional variation in surface properties of Norway spruce and scots pine needles in relation to forest decline. Cape JN; Paterson IS; Wolfenden J Environ Pollut; 1989; 58(4):325-42. PubMed ID: 15092422 [TBL] [Abstract][Full Text] [Related]
2. The influence of ozone and acid mist on the amount and wettability of the surface waxes in Norway spruce [Picea abies (L.) Karst.]. Barnes JD; Brown KA New Phytol; 1990 Mar; 114(3):531-535. PubMed ID: 33873965 [TBL] [Abstract][Full Text] [Related]
3. Boron retranslocation in Scots pine and Norway spruce. Lehto T; Lavola A; Julkunen-Tiitto R; Aphalo PJ Tree Physiol; 2004 Sep; 24(9):1011-7. PubMed ID: 15234898 [TBL] [Abstract][Full Text] [Related]
4. Persistent effects of ozone on needle water loss and wettability in Norway spruce. Barnes JD; Eamus D; Davison AW; Ro-Poulsen H; Mortensen L Environ Pollut; 1990; 63(4):345-63. PubMed ID: 15092315 [TBL] [Abstract][Full Text] [Related]
5. Ectomycorrhizal root tips in relation to site and stand characteristics in Norway spruce and Scots pine stands in boreal forests. Helmisaari HS; Ostonen I; Lõhmus K; Derome J; Lindroos AJ; Merilä P; Nöjd P Tree Physiol; 2009 Mar; 29(3):445-56. PubMed ID: 19203968 [TBL] [Abstract][Full Text] [Related]
6. Minimum cuticular conductance and cuticle features of Picea abies and Pinus cembra needles along an altitudinal gradient in the Dolomites (NE Italian Alps). Anfodillo T; Pasqua di Bisceglie D; Urso T Tree Physiol; 2002 May; 22(7):479-87. PubMed ID: 11986051 [TBL] [Abstract][Full Text] [Related]
7. Linking the contents of hydrophobic PAHs with the canopy water storage capacity of coniferous trees. Anna KI; Emanuel G; Anna SR; Błońska E; Lasota J; Łagan S Environ Pollut; 2018 Nov; 242(Pt B):1176-1184. PubMed ID: 30118907 [TBL] [Abstract][Full Text] [Related]
8. Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests. Ostonen I; Lõhmus K; Helmisaari HS; Truu J; Meel S Tree Physiol; 2007 Nov; 27(11):1627-34. PubMed ID: 17669752 [TBL] [Abstract][Full Text] [Related]
9. Role of climate, crown position, tree age and altitude in calculated ozone flux into needles of Picea abies and Pinus cembra: a synthesis. Wieser G; Häsler R; Götz B; Koch W; Havranek WM Environ Pollut; 2000 Sep; 109(3):415-22. PubMed ID: 15092874 [TBL] [Abstract][Full Text] [Related]
10. Comparative investigations of cuticular permeability of conifer needles from healthy and damaged trees. Schreiber L New Phytol; 1994 Oct; 128(2):251-261. PubMed ID: 33874361 [TBL] [Abstract][Full Text] [Related]
11. The evaluation of hazardous element content in the needles of the Norway spruce (Picea abies L.) that originated from anthropogenic activities in the vicinity of the native habitats. Popović V; Šešlija Jovanović D; Miletić Z; Milovanović J; Lučić A; Rakonjac L; Miljković D Environ Monit Assess; 2022 Nov; 195(1):109. PubMed ID: 36376774 [TBL] [Abstract][Full Text] [Related]
12. Performance of two Picea abies (L.) Karst. stands at different stages of decline : II. Photosynthesis and leaf conductance. Zimmermann R; Oren R; Schulze E-; Werk KS Oecologia; 1988 Sep; 76(4):513-518. PubMed ID: 28312400 [TBL] [Abstract][Full Text] [Related]
13. Effects of clear-cutting and soil preparation on natural 15N abundance in the soil and needles of two boreal conifer tree species. Sah SP; Ilvesniemi H Isotopes Environ Health Stud; 2006 Dec; 42(4):367-77. PubMed ID: 17090488 [TBL] [Abstract][Full Text] [Related]
14. Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands. Helmisaari HS; Derome J; Nöjd P; Kukkola M Tree Physiol; 2007 Oct; 27(10):1493-504. PubMed ID: 17669739 [TBL] [Abstract][Full Text] [Related]
15. The influence of ozone on the winter hardiness of Norway spruce [Picea abies (L.) Karst.]. Barnes JD; Davison AW New Phytol; 1988 Feb; 108(2):159-166. PubMed ID: 33874166 [TBL] [Abstract][Full Text] [Related]
16. Estimating foliage biomass in Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) plots. Lehtonen A Tree Physiol; 2005 Jul; 25(7):803-11. PubMed ID: 15870050 [TBL] [Abstract][Full Text] [Related]
17. Impacts of changing climate on the productivity of Norway spruce dominant stands with a mixture of Scots pine and birch in relation to water availability in southern and northern Finland. Ge ZM; Kellomäki S; Peltola H; Zhou X; Wang KY; Väisänen H Tree Physiol; 2011 Mar; 31(3):323-38. PubMed ID: 21436231 [TBL] [Abstract][Full Text] [Related]
18. Conifer aphids in an air-polluted environment. II. Host plant quality. Kainulainen P; Satka H; Mustaniemi A; Holopainen JK; Oksanen J Environ Pollut; 1993; 80(2):193-200. PubMed ID: 15091864 [TBL] [Abstract][Full Text] [Related]
19. Long-term exposure to enhanced UV-B radiation has no significant effects on growth or secondary compounds of outdoor-grown Scots pine and Norway spruce seedlings. Turtola S; Sallas L; Holopainen JK; Julkunen-Tiitto R; Kainulainen P Environ Pollut; 2006 Nov; 144(1):166-71. PubMed ID: 16515828 [TBL] [Abstract][Full Text] [Related]
20. Trends in needle and soil chemistry of Norway spruce and Scots pine stands in South Sweden 1985-1994. Thelin G; Rosengren-Brinck U; Nihlgård B; Barkman A Environ Pollut; 1998; 99(2):149-58. PubMed ID: 15093309 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]