These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 15092422)
21. Seasonal variation of the ¹³⁷Cs level and its relationship with potassium and carbon levels in conifer needles. Rantavaara A; Vetikko V; Raitio H; Aro L Sci Total Environ; 2012 Dec; 441():194-208. PubMed ID: 23137985 [TBL] [Abstract][Full Text] [Related]
22. Ozone exposure-response relationships for biomass and root/shoot ratio of beech (Fagus sylvatica), ash (Fraxinus excelsior), Norway spruce (Picea abies) and Scots pine (Pinus sylvestris). Landolt W; Bühlmann U; Bleuler P; Bucher JB Environ Pollut; 2000 Sep; 109(3):473-8. PubMed ID: 15092880 [TBL] [Abstract][Full Text] [Related]
23. Gradients and dynamics of inner bark and needle osmotic potentials in Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies L. Karst). Paljakka T; Jyske T; Lintunen A; Aaltonen H; Nikinmaa E; Hölttä T Plant Cell Environ; 2017 Oct; 40(10):2160-2173. PubMed ID: 28671720 [TBL] [Abstract][Full Text] [Related]
24. Evidence that longer needle retention of spruce and pine populations at high elevations and high latitudes is largely a phenotypic response. Reich PB; Oleksyn J; Modrzynski J; Tjoelker MG Tree Physiol; 1996 Jul; 16(7):643-7. PubMed ID: 14871702 [TBL] [Abstract][Full Text] [Related]
25. Carbon and nitrogen isotope ratios in different compartments of a healthy and a declining Picea abies forest in the Fichtelgebirge, NE Bavaria. Gebauer G; Schulze E- Oecologia; 1991 Jul; 87(2):198-207. PubMed ID: 28313836 [TBL] [Abstract][Full Text] [Related]
26. Solar radiation drives methane emissions from the shoots of Scots pine. Tenhovirta SAM; Kohl L; Koskinen M; Patama M; Lintunen A; Zanetti A; Lilja R; Pihlatie M New Phytol; 2022 Jul; 235(1):66-77. PubMed ID: 35342950 [TBL] [Abstract][Full Text] [Related]
27. Testing the unifying theory of ozone sensitivity with mature trees of Fagus sylvatica and Picea abies. Nunn AJ; Weiser G; Reiter IM; Häberle KH; Grote R; Havranek WM; Matyssek R Tree Physiol; 2006 Nov; 26(11):1391-403. PubMed ID: 16877324 [TBL] [Abstract][Full Text] [Related]
28. Logging residue removal after thinning in boreal forests: long-term impact on the nutrient status of Norway spruce and Scots pine needles. Luiro J; Kukkola M; Saarsalmi A; Tamminen P; Helmisaari HS Tree Physiol; 2010 Jan; 30(1):78-88. PubMed ID: 19934174 [TBL] [Abstract][Full Text] [Related]
29. Performance of two Picea abies (L.) Karst. stands at different stages of decline : VII. Nutrient relations and growth. Oren R; Schulze ED; Werk KS; Meyer J Oecologia; 1988 Nov; 77(2):163-173. PubMed ID: 28310368 [TBL] [Abstract][Full Text] [Related]
30. Nutrient contents and concentrations in relation to growth of Picea abies and Fagus sylvatica along a European transect. Bauer G; Schulze ED; Mund M Tree Physiol; 1997 Dec; 17(12):777-86. PubMed ID: 14759887 [TBL] [Abstract][Full Text] [Related]
31. Root proliferation of Norway spruce and Scots pine in response to local magnesium supply in soil. Zhang J; George E Tree Physiol; 2009 Feb; 29(2):199-206. PubMed ID: 19203945 [TBL] [Abstract][Full Text] [Related]
32. Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany. Köstner B; Falge E; Tenhunen JD Tree Physiol; 2002 Jun; 22(8):567-74. PubMed ID: 12045028 [TBL] [Abstract][Full Text] [Related]
33. Significance of ozone exposure for inter-annual differences in primary metabolites of old-growth beech (Fagus sylvatica L.) and Norway spruce (Picea abies L.) trees in a mixed forest stand. Alexou M; Hofer N; Liu X; Rennenberg H; Haberer K Plant Biol (Stuttg); 2007 Mar; 9(2):227-41. PubMed ID: 17357017 [TBL] [Abstract][Full Text] [Related]
34. Characterization of glutathione S-transferases in needles of Norway spruce trees from a forest decline stand. Schröder P; Wolf AE Tree Physiol; 1996 May; 16(5):503-8. PubMed ID: 14871720 [TBL] [Abstract][Full Text] [Related]
35. Levels of selected trace elements in Scots pine (Pinus sylvestris L.), silver birch (Betula pendula L.), and Norway maple (Acer platanoides L.) in an urbanized environment. Kosiorek M; Modrzewska B; Wyszkowski M Environ Monit Assess; 2016 Oct; 188(10):598. PubMed ID: 27696092 [TBL] [Abstract][Full Text] [Related]
36. Fast, nondestructive measurement of frost hardiness in conifer seedlings by VIS+NIR spectroscopy. Sundblad LG; Andersson M; Geladi P; Salomonson A; Sjöström M Tree Physiol; 2001 Jul; 21(11):751-7. PubMed ID: 11470661 [TBL] [Abstract][Full Text] [Related]
37. Methyl Jasmonate-Induced Monoterpenes in Scots Pine and Norway Spruce Tissues Affect Pine Weevil Orientation. Lundborg L; Nordlander G; Björklund N; Nordenhem H; Borg-Karlson AK J Chem Ecol; 2016 Dec; 42(12):1237-1246. PubMed ID: 27896555 [TBL] [Abstract][Full Text] [Related]
38. Environmental influences on the development of spruce needle cuticles. Cape JN; Percy KE New Phytol; 1993 Dec; 125(4):787-799. PubMed ID: 33874450 [TBL] [Abstract][Full Text] [Related]
39. Split-root labelling to investigate Veerman L; Kalbitz K; Schoorl JC; Tietema A Isotopes Environ Health Stud; 2018 Mar; 54(1):16-27. PubMed ID: 28748732 [TBL] [Abstract][Full Text] [Related]
40. Fluorescence measurements show stronger cold inhibition of photosynthetic light reactions in Scots pine compared to Norway spruce as well as during spring compared to autumn. Linkosalo T; Heikkinen J; Pulkkinen P; Mäkipää R Front Plant Sci; 2014; 5():264. PubMed ID: 24982664 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]