These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 15092837)

  • 1. Environmental control of stomatal conductance in forest trees of the Great Smoky Mountains National Park.
    Patterson MC; Samuelson L; Somers G; Mays A
    Environ Pollut; 2000 Nov; 110(2):225-33. PubMed ID: 15092837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological and foliar symptom response in the crowns of Prunus serotina, Fraxinus americana and Acer rubrum canopy trees to ambient ozone under forest conditions.
    Schaub M; Skelly JM; Zhang JW; Ferdinand JA; Savage JE; Stevenson RE; Davis DD; Steiner KC
    Environ Pollut; 2005 Feb; 133(3):553-67. PubMed ID: 15519730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of overstory density on ecophysiology of red oak (Quercus rubra) and sugar maple (Acer saccharum) seedlings in central Ontario shelterwoods.
    Parker WC; Dey DC
    Tree Physiol; 2008 May; 28(5):797-804. PubMed ID: 18316311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photosynthetic characteristics in canopies of Quercus rubra, Quercus prinus and Acer rubrum differ in response to soil water availability.
    Turnbull MH; Whitehead D; Tissue DT; Schuster WS; Brown KJ; Engel VC; Griffin KL
    Oecologia; 2002 Feb; 130(4):515-524. PubMed ID: 28547252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest.
    Daley MJ; Phillips NG
    Tree Physiol; 2006 Apr; 26(4):411-9. PubMed ID: 16414920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shade, leaf growth and crown development of Quercus rubra, Quercus velutina, Prunus serotina and Acer rubrum seedlings.
    Gottschalk KW
    Tree Physiol; 1994; 14(7_9):735-749. PubMed ID: 14967644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiology, morphology, and ozone uptake of leaves of black cherry seedlings, saplings, and canopy trees.
    Fredericksen TS; Joyce BJ; Skelly JM; Steiner KC; Kolb TE; Kouterick KB; Savage JE; Snyder KR
    Environ Pollut; 1995; 89(3):273-83. PubMed ID: 15091517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-mediated foliar response to ozone in black cherry trees.
    Fredericksen TS; Skelly JM; Steiner KC; Kolb TE; Kouterick KB
    Environ Pollut; 1996; 91(1):53-63. PubMed ID: 15091453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterns and variability in seedling carbon assimilation: implications for tree recruitment under climate change.
    Peltier DM; Ibáñez I
    Tree Physiol; 2015 Jan; 35(1):71-85. PubMed ID: 25576758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osmotic potential of several hardwood species as affected by manipulation of throughfall precipitation in an upland oak forest during a dry year.
    Tschaplinski TJ; Gebre GM; Shirshac TL
    Tree Physiol; 1998 May; 18(5):291-298. PubMed ID: 12651368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Element accumulation patterns of deciduous and evergreen tree seedlings on acid soils: implications for sensitivity to manganese toxicity.
    St Clair SB; Lynch JP
    Tree Physiol; 2005 Jan; 25(1):85-92. PubMed ID: 15519989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transpiration in response to variation in microclimate and soil moisture in southeastern deciduous forests.
    Oren R; Pataki DE
    Oecologia; 2001 May; 127(4):549-559. PubMed ID: 28547493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy investment in leaves of red maple and co-occurring oaks within a forested watershed.
    Nagel JM; Griffin KL; Schuster WS; Tissue DT; Turnbull MH; Brown KJ; Whitehead D
    Tree Physiol; 2002 Aug; 22(12):859-67. PubMed ID: 12184975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Population dynamics and growth patterns for a cohort of northern red oak (Quercus rubra) seedlings.
    Crow TR
    Oecologia; 1992 Aug; 91(2):192-200. PubMed ID: 28313456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of ozone injury on foliage of black cherry (Prunus serotina) and tall milkweed (Asclepias exaltata) in Great Smoky Mountains National Park.
    Chappelka A; Renfro J; Somers G; Nash B
    Environ Pollut; 1997; 95(1):13-8. PubMed ID: 15093469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forest regeneration composition and development in upland, mixed-oak forests.
    Fei S; Gould PJ; Steiner KC; Finley JC; McDill ME
    Tree Physiol; 2005 Dec; 25(12):1495-500. PubMed ID: 16137935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light environment alters ozone uptake per net photosynthetic rate in black cherry trees.
    Fredericksen TS; Kolb TE; Skelly JM; Steiner KC; Joyce BJ; Savage JE
    Tree Physiol; 1996 May; 16(5):485-90. PubMed ID: 14871717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological and foliar injury responses of Prunus serotina, Fraxinus americana, and Acer rubrum seedlings to varying soil moisture and ozone.
    Schaub M; Skelly JM; Steiner KC; Davis DD; Pennypacker SP; Zhang J; Ferdinand JA; Savage JE; Stevenson RE
    Environ Pollut; 2003; 124(2):307-20. PubMed ID: 12713930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CO
    Heichel GH; Turner NC
    Oecologia; 1983 Mar; 57(1-2):14-19. PubMed ID: 28310150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental regulation of xylem sap flow and total conductance of Larix gmelinii trees in eastern Siberia.
    Arneth A; Kelliher FM; Bauer G; Hollinger DY; Byers JN; Hunt JE; McSeveny TM; Ziegler W; Vygodskaya NN; Milukova I; Sogachov A; Varlagin A; Schulze ED
    Tree Physiol; 1996; 16(1_2):247-255. PubMed ID: 14871769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.