These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 15092844)

  • 21. Atmospheric aerosol over Vermont: chemical composition and sources.
    Polissar AV; Hopke PK; Poirot RL
    Environ Sci Technol; 2001 Dec; 35(23):4604-21. PubMed ID: 11770762
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Active methods of mercury removal from flue gases.
    Marczak M; Budzyń S; Szczurowski J; Kogut K; Burmistrz P
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):8383-8392. PubMed ID: 29572741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Canadian mercury inventories: the missing pieces.
    Hagreen LA; Lourie BA
    Environ Res; 2004 Jul; 95(3):272-81. PubMed ID: 15220062
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of mercury emissions inventories for the Great Lakes states.
    Murray M; Holmes SA
    Environ Res; 2004 Jul; 95(3):282-97. PubMed ID: 15220063
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor.
    Cao Y; Zhou H; Fan J; Zhao H; Zhou T; Hack P; Chan CC; Liou JC; Pan WP
    Environ Sci Technol; 2008 Dec; 42(24):9378-84. PubMed ID: 19174919
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mercury emissions from selected stationary combustion sources in Korea.
    Jun Lee S; Seo YC; Jurng J; Hong JH; Park JW; Hyun JE; Gyu Lee T
    Sci Total Environ; 2004 Jun; 325(1-3):155-61. PubMed ID: 15144786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Historical Mercury releases from commercial products: global environmental implications.
    Horowitz HM; Jacob DJ; Amos HM; Streets DG; Sunderland EM
    Environ Sci Technol; 2014 Sep; 48(17):10242-50. PubMed ID: 25127072
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Upward revision of global fossil fuel methane emissions based on isotope database.
    Schwietzke S; Sherwood OA; Bruhwiler LM; Miller JB; Etiope G; Dlugokencky EJ; Michel SE; Arling VA; Vaughn BH; White JW; Tans PP
    Nature; 2016 Oct; 538(7623):88-91. PubMed ID: 27708291
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mercury emissions from biomass burning in China.
    Huang X; Li M; Friedli HR; Song Y; Chang D; Zhu L
    Environ Sci Technol; 2011 Nov; 45(21):9442-8. PubMed ID: 21950526
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impacts of household coal and biomass combustion on indoor and ambient air quality in China: Current status and implication.
    Li Q; Jiang J; Wang S; Rumchev K; Mead-Hunter R; Morawska L; Hao J
    Sci Total Environ; 2017 Jan; 576():347-361. PubMed ID: 27792953
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical and chemical characterization of aerosols emitted from coal, heavy and light fuel oil, and small-scale wood combustion.
    Frey AK; Saarnio K; Lamberg H; Mylläri F; Karjalainen P; Teinilä K; Carbone S; Tissari J; Niemelä V; Häyrinen A; Rautiainen J; Kytömäki J; Artaxo P; Virkkula A; Pirjola L; Rönkkö T; Keskinen J; Jokiniemi J; Hillamo R
    Environ Sci Technol; 2014; 48(1):827-36. PubMed ID: 24328080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lake-sediment record of PAH, mercury, and fly-ash particle deposition near coal-fired power plants in Central Alberta, Canada.
    Barst BD; Ahad JME; Rose NL; Jautzy JJ; Drevnick PE; Gammon PR; Sanei H; Savard MM
    Environ Pollut; 2017 Dec; 231(Pt 1):644-653. PubMed ID: 28846985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anthropogenic mercury flows in India and impacts of emission controls.
    Burger Chakraborty L; Qureshi A; Vadenbo C; Hellweg S
    Environ Sci Technol; 2013 Aug; 47(15):8105-13. PubMed ID: 23834017
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Global combustion: the connection between fossil fuel and biomass burning emissions (1997-2010).
    Balch JK; Nagy RC; Archibald S; Bowman DM; Moritz MA; Roos CI; Scott AC; Williamson GJ
    Philos Trans R Soc Lond B Biol Sci; 2016 Jun; 371(1696):. PubMed ID: 27216509
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comprehensive evaluation of the influence of air combustion and oxy-fuel combustion flue gas constituents on Hg(0) re-emission in WFGD systems.
    Ochoa-González R; Díaz-Somoano M; Martínez-Tarazona MR
    J Hazard Mater; 2014 Jul; 276():157-63. PubMed ID: 24887118
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 500 years of mercury production: global annual inventory by region until 2000 and associated emissions.
    Hylander LD; Meili M
    Sci Total Environ; 2003 Mar; 304(1-3):13-27. PubMed ID: 12663168
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ice Core Perspective on Mercury Pollution during the Past 600 Years.
    Beal SA; Osterberg EC; Zdanowicz CM; Fisher DA
    Environ Sci Technol; 2015 Jul; 49(13):7641-7. PubMed ID: 26011603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of costs associated with atmospheric mercury emission reductions from coal combustion in China in 2010 and projections for 2020.
    Zhang Y; Ye X; Yang T; Li J; Chen L; Zhang W; Wang X
    Sci Total Environ; 2018 Jan; 610-611():796-801. PubMed ID: 28826117
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of MRF residue as alternative fuel in cement production.
    Fyffe JR; Breckel AC; Townsend AK; Webber ME
    Waste Manag; 2016 Jan; 47(Pt B):276-84. PubMed ID: 26187294
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inversion Approach to Validate Mercury Emissions Based on Background Air Monitoring at the High Altitude Research Station Jungfraujoch (3580 m).
    Denzler B; Bogdal C; Henne S; Obrist D; Steinbacher M; Hungerbühler K
    Environ Sci Technol; 2017 Mar; 51(5):2846-2853. PubMed ID: 28191932
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.