These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 15092893)

  • 1. The tolerance of Empetrum nigrum to copper and nickel.
    Monni S; Salemaa M; Millar N
    Environ Pollut; 2000 Aug; 109(2):221-9. PubMed ID: 15092893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical composition and ecophysiological responses of Empetrum nigrum to aboveground element application.
    Monni S; Uhlig C; Junttila O; Hansen E; Hynynen J
    Environ Pollut; 2001; 112(3):417-26. PubMed ID: 11291448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecophysiological responses of Empetrum nigrum to heavy metal pollution.
    Monni S; Uhlig C; Hansen E; Magel E
    Environ Pollut; 2001; 112(2):121-9. PubMed ID: 11234528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ability of Agrogyron elongatum to accumulate the single metal of cadmium, copper, nickel and lead and root exudation of organic acids.
    Yang H; Wong JW; Yang ZM; Zhou LX
    J Environ Sci (China); 2001 Jul; 13(3):368-75. PubMed ID: 11590773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastructural element localization by EDXS in Empetrum nigrum.
    Monni S; Bücking H; Kottke I
    Micron; 2002; 33(4):339-51. PubMed ID: 11814873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Element distribution in Empetrum nigrum microsites at heavy metal contaminated sites in Harjavalta, western Finland.
    Uhlig C; Salemaa M; Vanha-Majamaa I; Derome J
    Environ Pollut; 2001; 112(3):435-42. PubMed ID: 11291450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow growth of Empetrum nigrum in industrial barrens: combined effect of pollution and age of extant plants.
    Zverev VE; Zvereva EL; Kozlov MV
    Environ Pollut; 2008 Nov; 156(2):454-60. PubMed ID: 18329145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper resistance of Calluna vulgaris originating from the pollution gradient of a Cu-Ni smelter, in southwest Finland.
    Monni S; Salemaa M; White C; Tuittila E; Huopalainen M
    Environ Pollut; 2000 Aug; 109(2):211-9. PubMed ID: 15092892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper and nickel uptake, accumulation and tolerance in Typha latifolia with and without iron plaque on the root surface.
    Ye ZH; Baker AJM; Wong MH; Willis AJ
    New Phytol; 1997 Jul; 136(3):481-488. PubMed ID: 33863014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru).
    Chang Kee J; Gonzales MJ; Ponce O; Ramírez L; León V; Torres A; Corpus M; Loayza-Muro R
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):33957-33966. PubMed ID: 30280335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Airborne heavy metal pollution and its effects on foliar elemental composition of Empetrum hermaphroditum and Vaccinium myrtillus in Sør-Varanger, northern Norway.
    Uhlig C; Junttila O
    Environ Pollut; 2001; 114(3):461-9. PubMed ID: 11584644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil.
    Kachout SS; Mansoura AB; Mechergui R; Leclerc JC; Rejeb MN; Ouerghi Z
    J Sci Food Agric; 2012 Jan; 92(2):336-42. PubMed ID: 21935956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The prediction of combined toxicity of Cu-Ni for barley using an extended concentration addition model.
    Wang X; Meng X; Ma Y; Pu X; Zhong X
    Environ Pollut; 2018 Nov; 242(Pt A):136-142. PubMed ID: 29966837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of chronic exposure to waterborne copper and nickel in binary mixture on tissue-specific metal accumulation and reproduction in fathead minnow (Pimephales promelas).
    Driessnack MK; Jamwal A; Niyogi S
    Chemosphere; 2017 Oct; 185():964-974. PubMed ID: 28753743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of Ni, Cd, and Cu in green leafy vegetables collected from different cultivation areas in and around Colombo District, Sri Lanka.
    Kananke T; Wansapala J; Gunaratne A
    Environ Monit Assess; 2016 Mar; 188(3):187. PubMed ID: 26911591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromium toxicity tolerance of Solanum nigrum L. and Parthenium hysterophorus L. plants with reference to ion pattern, antioxidation activity and root exudation.
    UdDin I; Bano A; Masood S
    Ecotoxicol Environ Saf; 2015 Mar; 113():271-8. PubMed ID: 25528377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation of Cu and Ni in successive stages of Lymantria dispar L. (Lymantriidae, Lepidoptera) near ore smelters at Sudbury, Ontario, Canada.
    Bagatto G; Shorthouse JD
    Environ Pollut; 1996; 92(1):7-12. PubMed ID: 15091405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of the host plant Eucalyptus globulus at toxic nickel concentrations.
    Jourand P; Ducousso M; Reid R; Majorel C; Richert C; Riss J; Lebrun M
    Tree Physiol; 2010 Oct; 30(10):1311-9. PubMed ID: 20688880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal accumulation in A. baccifera growing naturally on abandoned copper tailings pond.
    Das M; Maiti SK
    Environ Monit Assess; 2007 Apr; 127(1-3):119-25. PubMed ID: 16955346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of industrial pollution on soil-to-plant transfer of plutonium in a Boreal forest.
    Riekkinen L; Jaakkola T
    Sci Total Environ; 2001 Oct; 278(1-3):161-70. PubMed ID: 11669264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.