BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 15093161)

  • 41. Automation of in-tip solid-phase microextraction in 96-well format for the determination of a model drug compound in human plasma by liquid chromatography with tandem mass spectrometric detection.
    Xie W; Mullett WM; Miller-Stein CM; Pawliszyn J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Feb; 877(4):415-20. PubMed ID: 19144575
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecularly imprinted solid-phase extraction of diazepam and its metabolites from hair samples.
    Ariffin MM; Miller EI; Cormack PA; Anderson RA
    Anal Chem; 2007 Jan; 79(1):256-62. PubMed ID: 17194149
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Separation and screening of compounds of biological origin using molecularly imprinted polymers.
    Xu X; Zhu L; Chen L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 May; 804(1):61-9. PubMed ID: 15093160
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Determination of methotrexate in human serum by high-performance liquid chromatography combined with pseudo template molecularly imprinted polymer.
    Liu X; Liu J; Huang Y; Zhao R; Liu G; Chen Y
    J Chromatogr A; 2009 Oct; 1216(44):7533-8. PubMed ID: 19559443
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthetic strategies for the generation of molecularly imprinted organic polymers.
    Mayes AG; Whitcombe MJ
    Adv Drug Deliv Rev; 2005 Dec; 57(12):1742-78. PubMed ID: 16225958
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determination of digoxin in serum samples using a flow-through fluorosensor based on a molecularly imprinted polymer.
    González GP; Hernando PF; Durand Alegría JS
    Biosens Bioelectron; 2008 Jun; 23(11):1754-8. PubMed ID: 18299192
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selective extraction of organophosphorus nerve agent degradation products by molecularly imprinted solid-phase extraction.
    Le Moullec S; Bégos A; Pichon V; Bellier B
    J Chromatogr A; 2006 Mar; 1108(1):7-13. PubMed ID: 16451804
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecularly imprinted polymer for solid-phase extraction of ephedrine and analogs from human plasma.
    Lasáková M; Thiébaut D; Jandera P; Pichon V
    J Sep Sci; 2009 Apr; 32(7):1036-42. PubMed ID: 19266546
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis and evaluation of molecularly imprinted polymers for enalapril and lisinopril, two synthetic peptide anti-hypertensive drugs.
    Theodoridis G; Konsta G; Bagia C
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 May; 804(1):43-51. PubMed ID: 15093158
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recognition mechanism of water-compatible molecularly imprinted solid-phase extraction and determination of nine quinolones in urine by high performance liquid chromatography.
    Sun HW; Qiao FX
    J Chromatogr A; 2008 Nov; 1212(1-2):1-9. PubMed ID: 18950771
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Trace level determination of beta-blockers in waste waters by highly selective molecularly imprinted polymers extraction followed by liquid chromatography-quadrupole-linear ion trap mass spectrometry.
    Gros M; Pizzolato TM; Petrović M; de Alda MJ; Barceló D
    J Chromatogr A; 2008 May; 1189(1-2):374-84. PubMed ID: 18035360
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Investigation of the nature of MIP recognition: the development and characterisation of a MIP for Ibuprofen.
    Farrington K; Regan F
    Biosens Bioelectron; 2007 Jan; 22(6):1138-46. PubMed ID: 17011773
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis of a molecularly imprinted polymer for the selective solid-phase extraction of chloramphenicol from honey.
    Schirmer C; Meisel H
    J Chromatogr A; 2006 Nov; 1132(1-2):325-8. PubMed ID: 17014862
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development of molecularly imprinted polymers for the binding of nitrofurantoin.
    Athikomrattanakul U; Katterle M; Gajovic-Eichelmann N; Scheller FW
    Biosens Bioelectron; 2009 Sep; 25(1):82-7. PubMed ID: 19559593
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Investigation of imprinting parameters and their recognition nature for quinine-molecularly imprinted polymers.
    He JF; Zhu QH; Deng QY
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Aug; 67(5):1297-305. PubMed ID: 17142092
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecularly imprinted polymer formats for capillary electrochromatography.
    Nilsson J; Spégel P; Nilsson S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 May; 804(1):3-12. PubMed ID: 15093153
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecularly imprinted polymers in the drug discovery process.
    Rathbone DL
    Adv Drug Deliv Rev; 2005 Dec; 57(12):1854-74. PubMed ID: 16226828
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Application of multivariate analysis to the screening of molecularly imprinted polymers (MIPs) for ametryn.
    Koohpaei AR; Shahtaheri SJ; Ganjali MR; Forushani AR; Golbabaei F
    Talanta; 2008 May; 75(4):978-86. PubMed ID: 18585172
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecularly imprinted polymer using-p-hydroxybenzoic acid, p-hydroxyphenylacetic acid and p-hydroxyphenylpropionic acid as templates.
    Sun BW; Li YZ; Chang WB
    J Mol Recognit; 2001; 14(6):388-92. PubMed ID: 11757071
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Study on the recognition of templates and their analogues on molecularly imprinted polymer using computational and conformational analysis approaches.
    Wu L; Li Y
    J Mol Recognit; 2004; 17(6):567-74. PubMed ID: 15386620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.