These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 15093161)

  • 81. An amobarbital molecularly imprinted microsphere for selective solid-phase extraction of phenobarbital from human urine and medicines and their determination by high-performance liquid chromatography.
    Hu SG; Wang SW; He XW
    Analyst; 2003 Dec; 128(12):1485-9. PubMed ID: 14737237
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Molecular imprinting for drug bioanalysis. A review on the application of imprinted polymers to solid-phase extraction and binding assay.
    Andersson LI
    J Chromatogr B Biomed Sci Appl; 2000 Feb; 739(1):163-73. PubMed ID: 10744324
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Selective solid phase extraction of propranolol on multiwell membrane filter plates modified with molecularly imprinted polymer.
    Renkecz T; Ceolin G; Horváth V
    Analyst; 2011 May; 136(10):2175-82. PubMed ID: 21448473
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Application of imprinted synthetic polymers in binding assay development.
    Sellergren B; Andersson LI
    Methods; 2000 Sep; 22(1):92-106. PubMed ID: 11020322
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Clean up of phenylurea herbicides in plant sample extracts using molecularly imprinted polymers.
    Tamayo FG; Casillas JL; Martin-Esteban A
    Anal Bioanal Chem; 2005 Mar; 381(6):1234-40. PubMed ID: 15756601
    [TBL] [Abstract][Full Text] [Related]  

  • 86. High-throughput polymer monolith in-tip SPME fiber preparation and application in drug analysis.
    Xie W; Mullett W; Pawliszyn J
    Bioanalysis; 2011 Dec; 3(23):2613-25. PubMed ID: 22136050
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Synthesis and evaluation of molecularly imprinted polymers for extracting hydrolysis products of organophosphate flame retardants.
    Möller K; Nilsson U; Crescenzi C
    J Chromatogr A; 2001 Dec; 938(1-2):121-30. PubMed ID: 11771830
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Characterization of the imprint effect and the influence of imprinting conditions on affinity, capacity, and heterogeneity in molecularly imprinted polymers using the Freundlich isotherm-affinity distribution analysis.
    Rampey AM; Umpleby RJ; Rushton GT; Iseman JC; Shah RN; Shimizu KD
    Anal Chem; 2004 Feb; 76(4):1123-33. PubMed ID: 14961747
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Preparation of a molecularly imprinted polymer for the solid-phase extraction of scopolamine with hyoscyamine as a dummy template molecule.
    Theodoridis G; Kantifes A; Manesiotis P; Raikos N; Tsoukali-Papadopoulou H
    J Chromatogr A; 2003 Feb; 987(1-2):103-9. PubMed ID: 12613802
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Towards the rational design of molecularly imprinted polymers.
    Nicholls IA
    J Mol Recognit; 1998; 11(1-6):79-82. PubMed ID: 10076811
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Current practices for describing the performance of molecularly imprinted polymers can be misleading and may be hampering the development of the field.
    Castell OK; Barrow DA; Kamarudin AR; Allender CJ
    J Mol Recognit; 2011; 24(6):1115-22. PubMed ID: 22038818
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Filter Plate-Based Screening of MIP SPE Materials for Capture of the Biomarker Pro-Gastrin-Releasing Peptide.
    Jagadeesan KK; Rossetti C; Abdel Qader A; Reubsaet L; Sellergren B; Laurell T; Ekström S
    SLAS Discov; 2017 Dec; 22(10):1253-1261. PubMed ID: 28346098
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Pharmaceutical applications for molecularly imprinted polymers.
    Allender CJ; Richardson C; Woodhouse B; Heard CM; Brain KR
    Int J Pharm; 2000 Feb; 195(1-2):39-43. PubMed ID: 10675681
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Analysis of smoke PAHs from selected Taiwanese cigarettes by using molecular imprinting polymers.
    Ho WL; Lin TC; Liu YY; Chen JA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(2):211-23. PubMed ID: 20390861
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Molecularly imprinted polymers as optical sensing receptors: correlation between analytical signals and binding isotherms.
    Ng SM; Narayanaswamy R
    Anal Chim Acta; 2011 Oct; 703(2):226-33. PubMed ID: 21889638
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Electropolymerization molecularly imprinted polymer (E-MIP) SPR sensing of drug molecules: pre-polymerization complexed terthiophene and carbazole electroactive monomers.
    Pernites R; Ponnapati R; Felipe MJ; Advincula R
    Biosens Bioelectron; 2011 Jan; 26(5):2766-71. PubMed ID: 21081269
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Advances in the manufacture of MIP nanoparticles.
    Poma A; Turner AP; Piletsky SA
    Trends Biotechnol; 2010 Dec; 28(12):629-37. PubMed ID: 20880600
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Affinity screening by packed capillary high performance liquid chromatography using molecular imprinted sorbents. II. Covalent imprinted polymers.
    Khasawneh MA; Vallano PT; Remcho VT
    J Chromatogr A; 2001 Jul; 922(1-2):87-97. PubMed ID: 11486894
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Preparation and characterization of molecularly imprinted electropolymerized carbon electrodes.
    Weetall HH; Rogers KR
    Talanta; 2004 Feb; 62(2):329-35. PubMed ID: 18969299
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Recent advances in molecular imprinting technology: current status, challenges and highlighted applications.
    Chen L; Xu S; Li J
    Chem Soc Rev; 2011 May; 40(5):2922-42. PubMed ID: 21359355
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.