These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 15093215)

  • 41. Dynamic position and force measurement for multiple optically trapped particles using a high-speed active pixel sensor.
    Towrie M; Botchway SW; Clark A; Freeman E; Halsall R; Parker AW; Prydderch M; Turchetta R; Ward AD; Pollard MR
    Rev Sci Instrum; 2009 Oct; 80(10):103704. PubMed ID: 19895067
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spectroscopic characterisation and manipulation of arrays of sub-picolitre aerosol droplets.
    Butler JR; Wills JB; Mitchem L; Burnham DR; McGloin D; Reid JP
    Lab Chip; 2009 Feb; 9(4):521-8. PubMed ID: 19190787
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nonlinear optical characterization of cluster dynamic in water in oil microemulsion by a pump probe laser beam technique.
    Vicari L
    Eur Phys J E Soft Matter; 2002 Nov; 9(4):335-40. PubMed ID: 15010903
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Applications of optical tweezers and microspheres for the micromanipulation of biomolecules and cells].
    Gallet F
    Ann Biol Clin (Paris); 2004; 62(1):85-6. PubMed ID: 15047496
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interactive light-driven and parallel manipulation of inhomogeneous particles.
    Rodrigo P; Eriksen R; Daria V; Glueckstad J
    Opt Express; 2002 Dec; 10(26):1550-6. PubMed ID: 19461691
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optical micromanipulation of active cells with minimal perturbations: direct and indirect pushing.
    Wang C; Chowdhury S; Gupta SK; Losert W
    J Biomed Opt; 2013 Apr; 18(4):045001. PubMed ID: 23545852
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phase-transition-like properties of double-beam optical tweezers.
    Stilgoe AB; Heckenberg NR; Nieminen TA; Rubinsztein-Dunlop H
    Phys Rev Lett; 2011 Dec; 107(24):248101. PubMed ID: 22243026
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Applications of the optical trapping technique to analyze chemical reactions in single emulsion particles.
    Urlaub E; Lankers M; Hartmann I; Popp J; Trunk M; Kiefer W
    Anal Bioanal Chem; 1996 Jun; 355(3-4):329-31. PubMed ID: 15045402
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 2D optical manipulation and assembly of shape-complementary planar microstructures.
    Rodrigo PJ; Kelemen L; Alonzo CA; Perch-Nielsen IR; Dam JS; Ormos P; Glückstad J
    Opt Express; 2007 Jul; 15(14):9009-14. PubMed ID: 19547240
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optically programmable excitonic traps.
    Alloing M; Lemaître A; Galopin E; Dubin F
    Sci Rep; 2013; 3():1578. PubMed ID: 23546532
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synergy of Intensity, Phase, and Polarization Enables Versatile Optical Nanomanipulation.
    Nan F; Yan Z
    Nano Lett; 2020 Apr; 20(4):2778-2783. PubMed ID: 32134670
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analytical approach of ordinary frozen waves for optical trapping and micromanipulation.
    Ambrosio LA; Zamboni-Rached M
    Appl Opt; 2015 Apr; 54(10):2584-93. PubMed ID: 25967163
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Controllable rotation of optical beams with bored helical phases.
    Baluyot SA; Hermosa N
    Appl Opt; 2010 Feb; 49(4):673-7. PubMed ID: 20119018
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Vortex-trap-induced fusion of femtoliter-volume aqueous droplets.
    Lorenz RM; Edgar JS; Jeffries GD; Zhao Y; McGloin D; Chiu DT
    Anal Chem; 2007 Jan; 79(1):224-8. PubMed ID: 17194143
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cell Deformation by Single-beam Acoustic Trapping: A Promising Tool for Measurements of Cell Mechanics.
    Hwang JY; Kim J; Park JM; Lee C; Jung H; Lee J; Shung KK
    Sci Rep; 2016 Jun; 6():27238. PubMed ID: 27273365
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Longitudinal position dependence of the second-harmonic generation of optically trapped silica microspheres.
    Sanchez L; Bruyère A; Bonhomme O; Benichou E; Brevet PF
    Opt Lett; 2020 Jun; 45(12):3196-3199. PubMed ID: 32538941
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Selective trapping of multiple particles by volume speckle field.
    Shvedov VG; Rode AV; Izdebskaya YV; Desyatnikov AS; Krolikowski W; Kivshar YS
    Opt Express; 2010 Feb; 18(3):3137-42. PubMed ID: 20174149
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Automated single-cell manipulation and sorting by light trapping.
    Buican TN; Smyth MJ; Crissman HA; Salzman GC; Stewart CC; Martin JC
    Appl Opt; 1987 Dec; 26(24):5311-6. PubMed ID: 20523522
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps.
    Rodrigo PJ; Gammelgaard L; Bøggild P; Perch-Nielsen I; Glückstad J
    Opt Express; 2005 Sep; 13(18):6899-904. PubMed ID: 19498709
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Translational and rotational manipulation of filamentous cells using optically driven microrobots.
    Hu S; Hu R; Dong X; Wei T; Chen S; Sun D
    Opt Express; 2019 Jun; 27(12):16475-16482. PubMed ID: 31252872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.