These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 15093215)

  • 61. Real-time interactive optical micromanipulation of a mixture of high-and low-index particles.
    Rodrigo P; Daria V; Glückstad J
    Opt Express; 2004 Apr; 12(7):1417-25. PubMed ID: 19474964
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives.
    Urban AS; Carretero-Palacios S; Lutich AA; Lohmüller T; Feldmann J; Jäckel F
    Nanoscale; 2014 May; 6(9):4458-74. PubMed ID: 24664273
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Optical trapping and micromanipulation with a photonic lantern-mode multiplexer.
    Velázquez-Benítez AM; Guerra-Santillán KY; Caudillo-Viurquez R; Antonio-López JE; Amezcua-Correa R; Hernández-Cordero J
    Opt Lett; 2018 Mar; 43(6):1303-1306. PubMed ID: 29543277
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Calibration of optically trapped nanotools.
    Carberry DM; Simpson SH; Grieve JA; Wang Y; Schäfer H; Steinhart M; Bowman R; Gibson GM; Padgett MJ; Hanna S; Miles MJ
    Nanotechnology; 2010 Apr; 21(17):175501. PubMed ID: 20368683
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Creation and manipulation of three-dimensional optically trapped structures.
    MacDonald MP; Paterson L; Volke-Sepulveda K; Arlt J; Sibbett W; Dholakia K
    Science; 2002 May; 296(5570):1101-3. PubMed ID: 12004124
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Dynamic morphing of 3D curved laser traps for all-optical manipulation of particles.
    Rodrigo JA; Angulo M; Alieva T
    Opt Express; 2018 Jul; 26(14):18608-18620. PubMed ID: 30114037
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Light-driven nanomotors with reciprocating motion and high controllability based on interference techniques.
    Mohammadnezhad M; Saeed SR; Abdulkareem SS; Hassanzadeh A
    Nanoscale Adv; 2024 Feb; 6(4):1122-1126. PubMed ID: 38356626
    [TBL] [Abstract][Full Text] [Related]  

  • 68. GPC-based optical micromanipulation in 3D real-time using a single spatial light modulator.
    Rodrigo PJ; Perch-Nielsen IR; Alonzo CA; Glückstad J
    Opt Express; 2006 Dec; 14(26):13107-12. PubMed ID: 19532207
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Generation of reconfigurable optical traps for microparticles spatial manipulation through dynamic split lens inspired light structures.
    Lizana A; Zhang H; Turpin A; Van Eeckhout A; Torres-Ruiz FA; Vargas A; Ramirez C; Pi F; Campos J
    Sci Rep; 2018 Jul; 8(1):11263. PubMed ID: 30050141
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Optical trapping below the diffraction limit with a tunable beam waist using super-oscillating beams.
    Nagar H; Admon T; Goldman D; Eyal A; Roichman Y
    Opt Lett; 2019 May; 44(10):2430-2433. PubMed ID: 31090699
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Optical trapping.
    Neuman KC; Block SM
    Rev Sci Instrum; 2004 Sep; 75(9):2787-809. PubMed ID: 16878180
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Projecting extended optical traps with shape-phase holography.
    Roichman Y; Grier DG
    Opt Lett; 2006 Jun; 31(11):1675-7. PubMed ID: 16688258
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Optical trapping in the presence of laser-induced thermal effects.
    Zenteno-Hernandez JA; Vázquez Lozano J; Sarabia-Alonso JA; Ramírez-Ramírez J; Ramos-García R
    Opt Lett; 2020 Jul; 45(14):3961-3964. PubMed ID: 32667328
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Array-based optical nanolithography using optically trapped microlenses.
    McLeod E; Arnold CB
    Opt Express; 2009 Mar; 17(5):3640-50. PubMed ID: 19259204
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Surface-modified complex SU-8 microstructures for indirect optical manipulation of single cells.
    Aekbote BL; Fekete T; Jacak J; Vizsnyiczai G; Ormos P; Kelemen L
    Biomed Opt Express; 2016 Jan; 7(1):45-56. PubMed ID: 26819816
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Autonomous and 3D real-time multi-beam manipulation in a microfluidic environment.
    Perch-Nielsen IR; Rodrigo PJ; Alonzo CA; Glückstad J
    Opt Express; 2006 Dec; 14(25):12199-205. PubMed ID: 19529649
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Optical manipulation and binding of microrods with multiple traps enabled in an inclined dual-fiber system.
    Liu Y; Yu M
    Biomicrofluidics; 2010 Dec; 4(4):43010. PubMed ID: 21267087
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Optical conveyors: a class of active tractor beams.
    Ruffner DB; Grier DG
    Phys Rev Lett; 2012 Oct; 109(16):163903. PubMed ID: 23215079
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Trapping and transporting aerosols with a single optical bottle beam generated by moiré techniques.
    Zhang P; Zhang Z; Prakash J; Huang S; Hernandez D; Salazar M; Christodoulides DN; Chen Z
    Opt Lett; 2011 Apr; 36(8):1491-3. PubMed ID: 21499400
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Three-dimensional forces in GPC-based counterpropagating-beam traps.
    Rodrigo PJ; Perch-Nielsen IR; Glückstad J
    Opt Express; 2006 Jun; 14(12):5812-22. PubMed ID: 19516750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.