These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 15093300)
1. The use of SEM/EDX for studying the distribution of air pollutants in the surroundings of the emission source. Haapala H Environ Pollut; 1998; 99(3):361-3. PubMed ID: 15093300 [TBL] [Abstract][Full Text] [Related]
2. Biomonitoring of the distribution of dust emissions by means of a new SEM/EDX technique. Haapala H; Kikuchi R Environ Sci Pollut Res Int; 2000; 7(4):189-90. PubMed ID: 19005832 [TBL] [Abstract][Full Text] [Related]
3. Distribution of airborne particles from multi-emission source. Kemppainen S; Tervahattu H; Kikuchi R Environ Monit Assess; 2003 Jun; 85(1):99-113. PubMed ID: 12807259 [TBL] [Abstract][Full Text] [Related]
4. Levels of selected trace elements in Scots pine (Pinus sylvestris L.), silver birch (Betula pendula L.), and Norway maple (Acer platanoides L.) in an urbanized environment. Kosiorek M; Modrzewska B; Wyszkowski M Environ Monit Assess; 2016 Oct; 188(10):598. PubMed ID: 27696092 [TBL] [Abstract][Full Text] [Related]
5. New comprehensive approach for airborne asbestos characterisation and monitoring. Klán M; Pokorná P; Havlíček D; Vik O; Racek M; Plocek J; Hovorka J Environ Sci Pollut Res Int; 2018 Oct; 25(30):30488-30496. PubMed ID: 30168111 [TBL] [Abstract][Full Text] [Related]
6. [Analysis of pine pollen by using FTIR, SEM and energy-dispersive X-ray analysis]. Wang YM; Wang HJ; Zhang ZY Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Nov; 25(11):1797-800. PubMed ID: 16499047 [TBL] [Abstract][Full Text] [Related]
7. Calcium Detection in Secretion Granules of Avian Oviduct by Scanning Electron Microscopy (SEM) and Energy-dispersive X-Ray Microanalysis (EDX) Makita T; Hatsuoka M; Sugi Y J Histochem Cytochem; 1983 Jan; 31(1A_suppl):219-221. PubMed ID: 28054842 [TBL] [Abstract][Full Text] [Related]
8. Nutrient amounts of ectomycorrhizae analysed by EDX using ESEM and ICP. Rumberger MD; Lentzsch P; Münzenberger B; Hüttl RF Mycorrhiza; 2005 Jun; 15(4):307-12. PubMed ID: 15726433 [TBL] [Abstract][Full Text] [Related]
9. Calcium detection in secretion granules of avian oviduct by scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX). Makita T; Hatsuoka M; Sugi Y J Histochem Cytochem; 1983 Jan; 31(1A Suppl):219-21. PubMed ID: 6827073 [TBL] [Abstract][Full Text] [Related]
10. Scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and aerosol time-of-flight mass spectrometry (ATOFMS) single particle analysis of metallurgy plant emissions. Arndt J; Deboudt K; Anderson A; Blondel A; Eliet S; Flament P; Fourmentin M; Healy RM; Savary V; Setyan A; Wenger JC Environ Pollut; 2016 Mar; 210():9-17. PubMed ID: 26708757 [TBL] [Abstract][Full Text] [Related]
11. Retrieving the Quantitative Chemical Information at Nanoscale from Scanning Electron Microscope Energy Dispersive X-ray Measurements by Machine Learning. Jany BR; Janas A; Krok F Nano Lett; 2017 Nov; 17(11):6520-6525. PubMed ID: 29032683 [TBL] [Abstract][Full Text] [Related]
12. The history of mercury pollution near the Spolana chlor-alkali plant (Neratovice, Czech Republic) as recorded by Scots pine tree rings and other bioindicators. Navrátil T; Šimeček M; Shanley JB; Rohovec J; Hojdová M; Houška J Sci Total Environ; 2017 May; 586():1182-1192. PubMed ID: 28237461 [TBL] [Abstract][Full Text] [Related]
13. Isolation of technogenic magnetic particles. Catinon M; Ayrault S; Boudouma O; Bordier L; Agnello G; Reynaud S; Tissut M Sci Total Environ; 2014 Mar; 475():39-47. PubMed ID: 24419285 [TBL] [Abstract][Full Text] [Related]
14. A New Approach Combining Analytical Methods for Workplace Exposure Assessment of Inhalable Multi-Walled Carbon Nanotubes. Tromp PC; Kuijpers E; Bekker C; Godderis L; Lan Q; Jedynska AD; Vermeulen R; Pronk A Ann Work Expo Health; 2017 Aug; 61(7):759-772. PubMed ID: 28810684 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the photosynthetic apparatus in cortical bark chlorenchyma of Scots pine. Ivanov AG; Krol M; Sveshnikov D; Malmberg G; Gardeström P; Hurry V; Oquist G; Huner NP Planta; 2006 May; 223(6):1165-77. PubMed ID: 16333639 [TBL] [Abstract][Full Text] [Related]
16. Scots pine needle surfaces on radial transects across the north boreal area of Finnish Lapland and the Kola Peninsula of Russia. Turunen M; Huttunen S Environ Pollut; 1996; 93(2):175-94. PubMed ID: 15091357 [TBL] [Abstract][Full Text] [Related]
17. Magnetic properties and element concentrations in lichens exposed to airborne pollutants released during cement production. Paoli L; Winkler A; Guttová A; Sagnotti L; Grassi A; Lackovičová A; Senko D; Loppi S Environ Sci Pollut Res Int; 2017 May; 24(13):12063-12080. PubMed ID: 26875821 [TBL] [Abstract][Full Text] [Related]
18. Scanning Electron Microscopy-Energy-Dispersive X-Ray (SEM/EDX): A Rapid Diagnostic Tool to Aid the Identification of Burnt Bone and Contested Cremains. Ellingham STD; Thompson TJU; Islam M J Forensic Sci; 2018 Mar; 63(2):504-510. PubMed ID: 28605021 [TBL] [Abstract][Full Text] [Related]
19. Elemental analyses of pine bark and wood in an environmental study. Saarela KE; Harju L; Rajander J; Lill JO; Heselius SJ; Lindroos A; Mattsson K Sci Total Environ; 2005 May; 343(1-3):231-41. PubMed ID: 15862848 [TBL] [Abstract][Full Text] [Related]
20. Exploiting biogeochemical and spectroscopic techniques to assess the geochemical distribution and release dynamics of chromium and lead in a contaminated floodplain soil. Rinklebe J; Shaheen SM; Schröter F; Rennert T Chemosphere; 2016 May; 150():390-397. PubMed ID: 26921591 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]