These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 15093422)

  • 1. Cu accumulation in the earthworm Dendrobaena veneta in a heavy metal (Cu, Pb, Zn) contaminated site compared to Cu accumulation in laboratory experiments.
    Marinussen MP; van der Zee SE; de Haan FA
    Environ Pollut; 1997; 96(2):227-33. PubMed ID: 15093422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Cd or Pb addition to Cu-contaminated soil on tissue Cu accumulation in the earthworm, Dendrobaena veneta.
    Marinussen MP; van der Zee SE; de Haan FA
    Ecotoxicol Environ Saf; 1997 Dec; 38(3):309-15. PubMed ID: 9469885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cu accumulation in Lumbricus rubellus under laboratory conditions compared with accumulation under field conditions.
    Marinussen MP; Van der Zee SE; de Haan FA
    Ecotoxicol Environ Saf; 1997 Feb; 36(1):17-26. PubMed ID: 9056396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Earthworms as biological monitors of cadmium, copper, lead and zinc in metalliferous soils.
    Morgan JE; Morgan AJ
    Environ Pollut; 1988; 54(2):123-38. PubMed ID: 15092529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation of heavy metals from polluted soils by the earthworm, Lumbricus rubellus: can laboratory exposure of 'control' worms reduce biomonitoring problems?
    Corp N; Morgan AJ
    Environ Pollut; 1991; 74(1):39-52. PubMed ID: 15092074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil.
    Lu K; Yang X; Gielen G; Bolan N; Ok YS; Niazi NK; Xu S; Yuan G; Chen X; Zhang X; Liu D; Song Z; Liu X; Wang H
    J Environ Manage; 2017 Jan; 186(Pt 2):285-292. PubMed ID: 27264699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The co-application of earthworms (Dendrobaena veneta) and compost to increase hydrocarbon losses from diesel contaminated soils.
    Hickman ZA; Reid BJ
    Environ Int; 2008 Oct; 34(7):1016-22. PubMed ID: 18456332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils.
    Sizmur T; Palumbo-Roe B; Watts MJ; Hodson ME
    Environ Pollut; 2011 Mar; 159(3):742-8. PubMed ID: 21185630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils.
    Lamb DT; Ming H; Megharaj M; Naidu R
    J Hazard Mater; 2009 Nov; 171(1-3):1150-8. PubMed ID: 19656626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the performance of vermicomposting process applied to sewage sludge by monitoring of the compost quality and immune responses in three earthworm species: Eisenia fetida, Eisenia andrei and Dendrobaena veneta.
    Suleiman H; Rorat A; Grobelak A; Grosser A; Milczarek M; Płytycz B; Kacprzak M; Vandenbulcke F
    Bioresour Technol; 2017 Oct; 241():103-112. PubMed ID: 28550771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The distribution and intracellular compartmentation of metals in the endogeic earthworm Aporrectodea caliginosa sampled from an unpolluted and a metal-contaminated site.
    Morgan JE; Morgan AJ
    Environ Pollut; 1998; 99(2):167-75. PubMed ID: 15093311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Avoidance of Cu- and Zn-contaminated soil by three ecologically different earthworm species.
    Lukkari T; Haimi J
    Ecotoxicol Environ Saf; 2005 Sep; 62(1):35-41. PubMed ID: 15978289
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Reed EMS; O'Connor MO; Johnson IC; Silver WL; Saunders CJ
    PeerJ; 2021; 9():e12148. PubMed ID: 34589308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Spatial Variation of Heavy Metals in Soils and Its Ecological Risk Evaluation in a Typical
    Zhang HJ; Zhao KL; Ye ZQ; Xu B; Zhao WM; Gu XB; Zhang HF
    Huan Jing Ke Xue; 2018 Jun; 39(6):2893-2903. PubMed ID: 29965648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal availability in heavy metal-contaminated open burning and open detonation soil: assessment using soil enzymes, earthworms, and chemical extractions.
    Lee SH; Kim EY; Hyun S; Kim JG
    J Hazard Mater; 2009 Oct; 170(1):382-8. PubMed ID: 19540045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of epigeic, anecic and endogeic earthworms on metal and metalloid mobility and availability.
    Sizmur T; Tilston EL; Charnock J; Palumbo-Roe B; Watts MJ; Hodson ME
    J Environ Monit; 2011 Feb; 13(2):266-73. PubMed ID: 21161093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metal concentrations in soil and earthworms in a floodplain grassland.
    van Vliet PC; van der Zee SE; Ma WC
    Environ Pollut; 2005 Dec; 138(3):505-16. PubMed ID: 15951081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Long-term effects of tillage methods on heavy metal accumulation and availability in purple paddy soil].
    Chang TJ; Cui XQ; Ruan Z; Zhao XL
    Huan Jing Ke Xue; 2014 Jun; 35(6):2381-91. PubMed ID: 25158521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.