These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 15093592)
1. Investigation of the cytotoxicity and insulin transport of acrylic-based copolymer protein delivery systems in contact with Caco-2 cultures. Foss AC; Peppas NA Eur J Pharm Biopharm; 2004 May; 57(3):447-55. PubMed ID: 15093592 [TBL] [Abstract][Full Text] [Related]
2. Development of acrylic-based copolymers for oral insulin delivery. Foss AC; Goto T; Morishita M; Peppas NA Eur J Pharm Biopharm; 2004 Mar; 57(2):163-9. PubMed ID: 15018971 [TBL] [Abstract][Full Text] [Related]
3. Development of PEGDMA: MAA based hydrogel microparticles for oral insulin delivery. Kumar A; Lahiri SS; Singh H Int J Pharm; 2006 Oct; 323(1-2):117-24. PubMed ID: 16828246 [TBL] [Abstract][Full Text] [Related]
4. Permeation enhancer effect of chitosan and chitosan derivatives: comparison of formulations as soluble polymers and nanoparticulate systems on insulin absorption in Caco-2 cells. Sadeghi AM; Dorkoosh FA; Avadi MR; Weinhold M; Bayat A; Delie F; Gurny R; Larijani B; Rafiee-Tehrani M; Junginger HE Eur J Pharm Biopharm; 2008 Sep; 70(1):270-8. PubMed ID: 18492606 [TBL] [Abstract][Full Text] [Related]
5. Complexation hydrogels for oral protein delivery: an in vitro assessment of the insulin transport-enhancing effects following dissolution in simulated digestive fluids. Perakslis E; Tuesca A; Lowman A J Biomater Sci Polym Ed; 2007; 18(12):1475-90. PubMed ID: 17988515 [TBL] [Abstract][Full Text] [Related]
6. Nanosized insulin-complexes based on biodegradable amine-modified graft polyesters poly[vinyl-3-(diethylamino)-propylcarbamate-co-(vinyl acetate)-co-(vinyl alcohol)]-graft-poly(L-lactic acid): protection against enzymatic degradation, interaction with Caco-2 cell monolayers, peptide transport and cytotoxicity. Simon M; Behrens I; Dailey LA; Wittmar M; Kissel T Eur J Pharm Biopharm; 2007 May; 66(2):165-72. PubMed ID: 17150341 [TBL] [Abstract][Full Text] [Related]
7. Novel polyelectrolyte complexes based on poly(methacrylic acid)-bis(2-aminopropyl)poly(ethylene glycol) for oral protein delivery. Sajeesh S; Sharma CP J Biomater Sci Polym Ed; 2007; 18(9):1125-39. PubMed ID: 17931503 [TBL] [Abstract][Full Text] [Related]
8. Devices based on intelligent biopolymers for oral protein delivery. Peppas NA Int J Pharm; 2004 Jun; 277(1-2):11-7. PubMed ID: 15158964 [TBL] [Abstract][Full Text] [Related]
9. Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs. Lin YH; Sonaje K; Lin KM; Juang JH; Mi FL; Yang HW; Sung HW J Control Release; 2008 Dec; 132(2):141-9. PubMed ID: 18817821 [TBL] [Abstract][Full Text] [Related]
10. Mucosal insulin delivery systems based on complexation polymer hydrogels: effect of particle size on insulin enteral absorption. Morishita M; Goto T; Peppas NA; Joseph JI; Torjman MC; Munsick C; Nakamura K; Yamagata T; Takayama K; Lowman AM J Control Release; 2004 May; 97(1):115-24. PubMed ID: 15147809 [TBL] [Abstract][Full Text] [Related]
11. Normal flora: living vehicles for non-invasive protein drug delivery. Shao J; Kaushal G Int J Pharm; 2004 Nov; 286(1-2):117-24. PubMed ID: 15501008 [TBL] [Abstract][Full Text] [Related]
12. Preparation and characterization of methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Park EK; Lee SB; Lee YM Biomaterials; 2005 Mar; 26(9):1053-61. PubMed ID: 15369694 [TBL] [Abstract][Full Text] [Related]
13. Chemoenzymatic synthesis of sugar-containing biocompatible hydrogels: crosslinked poly(beta-methylglucoside acrylate) and poly(beta-methylglucoside methacrylate). Park DW; Haam S; Lee TG; Kim HS; Kim WS J Biomed Mater Res A; 2004 Dec; 71(3):497-507. PubMed ID: 15386484 [TBL] [Abstract][Full Text] [Related]
14. Novel delivery system based on complexation hydrogels as delivery vehicles for insulin-transferrin conjugates. Kavimandan NJ; Losi E; Peppas NA Biomaterials; 2006 Jul; 27(20):3846-54. PubMed ID: 16529810 [TBL] [Abstract][Full Text] [Related]
15. Dexamethasone-loaded nanoparticle-coated microparticles: correlation between in vitro drug release and drug transport across Caco-2 cell monolayers. Beck RC; Pohlmann AR; Hoffmeister C; Gallas MR; Collnot E; Schaefer UF; Guterres SS; Lehr CM Eur J Pharm Biopharm; 2007 Aug; 67(1):18-30. PubMed ID: 17317124 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of acrylate-based block copolymers prepared by atom transfer radical polymerization as matrices for paclitaxel delivery from coronary stents. Richard RE; Schwarz M; Ranade S; Chan AK; Matyjaszewski K; Sumerlin B Biomacromolecules; 2005; 6(6):3410-8. PubMed ID: 16283773 [TBL] [Abstract][Full Text] [Related]
17. Synthesis, characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers. Mao S; Shuai X; Unger F; Wittmar M; Xie X; Kissel T Biomaterials; 2005 Nov; 26(32):6343-56. PubMed ID: 15913769 [TBL] [Abstract][Full Text] [Related]
18. Investigation of pluronic and PEG-PE micelles as carriers of meso-tetraphenyl porphine for oral administration. Sezgin Z; Yuksel N; Baykara T Int J Pharm; 2007 Mar; 332(1-2):161-7. PubMed ID: 17055200 [TBL] [Abstract][Full Text] [Related]
19. Cellular evaluation of oral chemotherapy carriers. Blanchette J; Peppas NA J Biomed Mater Res A; 2005 Mar; 72(4):381-8. PubMed ID: 15666363 [TBL] [Abstract][Full Text] [Related]
20. Loading and mobility of spin-labeled insulin in physiologically responsive complexation hydrogels intended for oral administration. Besheer A; Wood KM; Peppas NA; Mäder K J Control Release; 2006 Mar; 111(1-2):73-80. PubMed ID: 16460830 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]