These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 15094055)

  • 21. Probing key DNA contacts in AraR-mediated transcriptional repression of the Bacillus subtilis arabinose regulon.
    Franco IS; Mota LJ; Soares CM; de Sá-Nogueira I
    Nucleic Acids Res; 2007; 35(14):4755-66. PubMed ID: 17617643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A role for the interdomain linker region of the Escherichia coli CytR regulator in repression complex formation.
    Kallipolitis BH; Valentin-Hansen P
    J Mol Biol; 2004 Sep; 342(1):1-7. PubMed ID: 15313602
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Helicobacter pylori NikR's interaction with DNA: a two-tiered mode of recognition.
    Dosanjh NS; West AL; Michel SL
    Biochemistry; 2009 Jan; 48(3):527-36. PubMed ID: 19119856
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure and function of the arginine repressor-operator complex from Bacillus subtilis.
    Garnett JA; Marincs F; Baumberg S; Stockley PG; Phillips SE
    J Mol Biol; 2008 May; 379(2):284-98. PubMed ID: 18455186
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative determination of conformational, dynamic, and kinetic parameters of a ligand-protein/DNA complex from a complete relaxation and conformational exchange matrix analysis of intermolecular transferred NOESY.
    Moseley HN; Lee W; Arrowsmith CH; Krishna NR
    Biochemistry; 1997 May; 36(18):5293-9. PubMed ID: 9154911
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Specificity and affinity of Lac repressor for the auxiliary operators O2 and O3 are explained by the structures of their protein-DNA complexes.
    Romanuka J; Folkers GE; Biris N; Tishchenko E; Wienk H; Bonvin AM; Kaptein R; Boelens R
    J Mol Biol; 2009 Jul; 390(3):478-89. PubMed ID: 19450607
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Different regions of Mlc and NagC, homologous transcriptional repressors controlling expression of the glucose and N-acetylglucosamine phosphotransferase systems in Escherichia coli, are required for inducer signal recognition.
    Pennetier C; Domínguez-Ramírez L; Plumbridge J
    Mol Microbiol; 2008 Jan; 67(2):364-77. PubMed ID: 18067539
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational and experimental probes of symmetry mismatches in the Arc repressor-DNA complex.
    Spector S; Sauer RT; Tidor B
    J Mol Biol; 2004 Jul; 340(2):253-61. PubMed ID: 15201050
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conformational and thermodynamic changes of the repressor/DNA operator complex upon monomerization shed new light on regulation mechanisms of bacterial resistance against beta-lactam antibiotics.
    Boudet J; Duval V; Van Melckebeke H; Blackledge M; Amoroso A; Joris B; Simorre JP
    Nucleic Acids Res; 2007; 35(13):4384-95. PubMed ID: 17576674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing the molecular mechanism of action of co-repressor in the E. coli methionine repressor-operator complex using surface plasmon resonance (SPR).
    Parsons ID; Persson B; Mekhalfia A; Blackburn GM; Stockley PG
    Nucleic Acids Res; 1995 Jan; 23(2):211-6. PubMed ID: 7862523
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure of an OhrR-ohrA operator complex reveals the DNA binding mechanism of the MarR family.
    Hong M; Fuangthong M; Helmann JD; Brennan RG
    Mol Cell; 2005 Oct; 20(1):131-41. PubMed ID: 16209951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing electrostatic interactions and ligand binding in aspartyl-tRNA synthetase through site-directed mutagenesis and computer simulations.
    Thompson D; Lazennec C; Plateau P; Simonson T
    Proteins; 2008 May; 71(3):1450-60. PubMed ID: 18076053
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of new ligands for the methionine biosynthesis transcriptional regulator (MetJ) by FAC-MS.
    Martí-Arbona R; Teshima M; Anderson PS; Nowak-Lovato KL; Hong-Geller E; Unkefer CJ; Unkefer PJ
    J Mol Microbiol Biotechnol; 2012; 22(4):205-14. PubMed ID: 22890386
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Radiation-induced tetramer-to-dimer transition of Escherichia coli lactose repressor.
    Goffinont S; Davidkova M; Spotheim-Maurizot M
    Biochem Biophys Res Commun; 2009 Aug; 386(2):300-4. PubMed ID: 19520056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure of the arginine repressor protein in complex with the DNA operator from Mycobacterium tuberculosis.
    Cherney LT; Cherney MM; Garen CR; Lu GJ; James MN
    J Mol Biol; 2008 Dec; 384(5):1330-40. PubMed ID: 18952097
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors.
    Molina-Henares AJ; Krell T; Eugenia Guazzaroni M; Segura A; Ramos JL
    FEMS Microbiol Rev; 2006 Mar; 30(2):157-86. PubMed ID: 16472303
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recognition of DNA by omega protein from the broad-host range Streptococcus pyogenes plasmid pSM19035: analysis of binding to operator DNA with one to four heptad repeats.
    de la Hoz AB; Pratto F; Misselwitz R; Speck C; Weihofen W; Welfle K; Saenger W; Welfle H; Alonso JC
    Nucleic Acids Res; 2004; 32(10):3136-47. PubMed ID: 15190131
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and functional properties of the Bacillus subtilis transcriptional repressor Rex.
    Wang E; Bauer MC; Rogstam A; Linse S; Logan DT; von Wachenfeldt C
    Mol Microbiol; 2008 Jul; 69(2):466-78. PubMed ID: 18485070
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Negative cooperativity of uric acid binding to the transcriptional regulator HucR from Deinococcus radiodurans.
    Wilkinson SP; Grove A
    J Mol Biol; 2005 Jul; 350(4):617-30. PubMed ID: 15967460
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of L-methionine overproduction by Escherichia coli: the replacement of Ser-54 by Asn in the MetJ protein causes the derepression of L-methionine biosynthetic enzymes.
    Nakamori S; Kobayashi S; Nishimura T; Takagi H
    Appl Microbiol Biotechnol; 1999 Aug; 52(2):179-85. PubMed ID: 10499257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.