BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

727 related articles for article (PubMed ID: 15094351)

  • 1. Role of gap junctions in the propagation of the cardiac action potential.
    Rohr S
    Cardiovasc Res; 2004 May; 62(2):309-22. PubMed ID: 15094351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lessons learned about slow discontinuous conduction from models of impulse propagation.
    Rudy Y
    J Electrocardiol; 2005 Oct; 38(4 Suppl):52-4. PubMed ID: 16226074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Physiology and pathophysiology of cardiac impulse conduction].
    Kléber AG; Fast VG; Kucera J; Rohr S
    Z Kardiol; 1996; 85 Suppl 6():25-33. PubMed ID: 9064973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin.
    Gaudesius G; Miragoli M; Thomas SP; Rohr S
    Circ Res; 2003 Sep; 93(5):421-8. PubMed ID: 12893743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homogenization of an electrophysiological model for a strand of cardiac myocytes with gap-junctional and electric-field coupling.
    Hand PE; Peskin CS
    Bull Math Biol; 2010 Aug; 72(6):1408-24. PubMed ID: 20049544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical coupling and impulse propagation in anatomically modeled ventricular tissue.
    Muller-Borer BJ; Erdman DJ; Buchanan JW
    IEEE Trans Biomed Eng; 1994 May; 41(5):445-54. PubMed ID: 8070804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiac muscle cell interaction: from microanatomy to the molecular make-up of the gap junction.
    Severs NJ
    Histol Histopathol; 1995 Apr; 10(2):481-501. PubMed ID: 7599443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic behavior of gap junctions in each cardiac cycle: a novel view on the electrical coupling of normal cardiocytes.
    Mahdavi S; Rezaei-Tavirani M; Gharibzadeh S; Towhidkhah F
    Med Hypotheses; 2006; 67(2):300-3. PubMed ID: 16563647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the hyperpolarization-activated inward current If in arrhythmogenesis: a computer model study.
    Kuijpers NH; Keldermann RH; ten Eikelder HM; Arts T; Hilbers PA
    IEEE Trans Biomed Eng; 2006 Aug; 53(8):1499-511. PubMed ID: 16916084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propagation of action potentials between parallel chains of cardiac muscle cells in PSpice simulation.
    Sperelakis N
    Can J Physiol Pharmacol; 2003 Jan; 81(1):48-58. PubMed ID: 12665257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute ischemia-induced gap junctional uncoupling and arrhythmogenesis.
    De Groot JR; Coronel R
    Cardiovasc Res; 2004 May; 62(2):323-34. PubMed ID: 15094352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gap-junction channels inhibit transverse propagation in cardiac muscle.
    Sperelakis N; Ramasamy L
    Biomed Eng Online; 2005 Jan; 4():7. PubMed ID: 15679888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene transfer of connexin43 mutants attenuates coupling in cardiomyocytes: novel basis for modulation of cardiac conduction by gene therapy.
    Kizana E; Chang CY; Cingolani E; Ramirez-Correa GA; Sekar RB; Abraham MR; Ginn SL; Tung L; Alexander IE; Marbán E
    Circ Res; 2007 Jun; 100(11):1597-604. PubMed ID: 17495226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basic mechanisms of cardiac impulse propagation and associated arrhythmias.
    Kléber AG; Rudy Y
    Physiol Rev; 2004 Apr; 84(2):431-88. PubMed ID: 15044680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacological modulation of cardiac gap junctions to enhance cardiac conduction: evidence supporting a novel target for antiarrhythmic therapy.
    Eloff BC; Gilat E; Wan X; Rosenbaum DS
    Circulation; 2003 Dec; 108(25):3157-63. PubMed ID: 14656916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Connexins and junctional channels. Roles in the spreading of cardiac electrical excitation and heart development].
    Hervé JC; Derangeon M; Théveniau-Ruissy M; Miquerol L; Sarrouilhe D; Gros D
    Pathol Biol (Paris); 2008 Jul; 56(5):334-41. PubMed ID: 18586407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of cell geometry on conduction velocity in a subcellular model of myocardium.
    Toure A; Cabo C
    IEEE Trans Biomed Eng; 2010 Sep; 57(9):2107-14. PubMed ID: 20501344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pro-arrhythmogenic potential of immature cardiomyocytes is triggered by low coupling and cluster size.
    de Boer TP; van der Heyden MA; Rook MB; Wilders R; Broekstra R; Kok B; Vos MA; de Bakker JM; van Veen TA
    Cardiovasc Res; 2006 Sep; 71(4):704-14. PubMed ID: 16824499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of carbenoxolone on human myocardial conduction: a tool to investigate the role of gap junctional uncoupling in human arrhythmogenesis.
    Kojodjojo P; Kanagaratnam P; Segal OR; Hussain W; Peters NS
    J Am Coll Cardiol; 2006 Sep; 48(6):1242-9. PubMed ID: 16979013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boundary effects influence velocity of transverse propagation of simulated cardiac action potentials.
    Sperelakis N; Kalloor B; Ramasamy L
    Theor Biol Med Model; 2005 Sep; 2():36. PubMed ID: 16144554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.