BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 15094459)

  • 1. Specific neocerebellar activation during out-of-phase bimanual movements.
    Habas C; Axelrad H; Nguyen TH; Cabanis EA
    Neuroreport; 2004 Mar; 15(4):595-9. PubMed ID: 15094459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cerebellar second homunculus remains silent during passive bimanual movements.
    Habas C; Axelrad H; Cabanis EA
    Neuroreport; 2004 Jul; 15(10):1571-4. PubMed ID: 15232285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical areas functionally linked with the cerebellar second homunculus during out-of-phase bimanual movements.
    Habas C; Cabanis EA
    Neuroradiology; 2006 Apr; 48(4):273-9. PubMed ID: 16465531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced recruitment of motor association areas during bimanual coordination in concert pianists.
    Haslinger B; Erhard P; Altenmüller E; Hennenlotter A; Schwaiger M; Gräfin von Einsiedel H; Rummeny E; Conrad B; Ceballos-Baumann AO
    Hum Brain Mapp; 2004 Jul; 22(3):206-15. PubMed ID: 15195287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebellar mediation of the complexity of bimanual compared to unimanual movements.
    Tracy JI; Faro SS; Mohammed FB; Pinus AB; Madi SM; Laskas JW
    Neurology; 2001 Nov; 57(10):1862-9. PubMed ID: 11723277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of finger-movement speed of the dominant and the subdominant hand on cerebellar activation: A functional magnetic resonance imaging study.
    Jäncke L; Specht K; Mirzazade S; Peters M
    Neuroimage; 1999 May; 9(5):497-507. PubMed ID: 10329289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resource-demanding versus cost-effective bimanual interaction in the brain.
    Aramaki Y; Osu R; Sadato N
    Exp Brain Res; 2010 Jun; 203(2):407-18. PubMed ID: 20419370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency.
    Debaere F; Wenderoth N; Sunaert S; Van Hecke P; Swinnen SP
    Neuroimage; 2004 Apr; 21(4):1416-27. PubMed ID: 15050567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical and cerebellar activity of the human brain during imagined and executed unimanual and bimanual action sequences: a functional MRI study.
    Nair DG; Purcott KL; Fuchs A; Steinberg F; Kelso JA
    Brain Res Cogn Brain Res; 2003 Feb; 15(3):250-60. PubMed ID: 12527099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric control mechanisms of bimanual coordination: an application of directed connectivity analysis to kinematic and functional MRI data.
    Maki Y; Wong KF; Sugiura M; Ozaki T; Sadato N
    Neuroimage; 2008 Oct; 42(4):1295-304. PubMed ID: 18674627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Goal synchronization of bimanual skills depends on proprioception.
    Kazennikov OV; Wiesendanger M
    Neurosci Lett; 2005 Nov; 388(3):153-6. PubMed ID: 16039778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Timing of bimanual movements and deafferentation: implications for the role of sensory movement effects.
    Drewing K; Stenneken P; Cole J; Prinz W; Aschersleben G
    Exp Brain Res; 2004 Sep; 158(1):50-7. PubMed ID: 15007586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interhemispheric transfer of predictive force control during grasping in cerebellar disorders.
    Nowak DA; Hufnagel A; Ameli M; Timmann D; Hermsdörfer J
    Cerebellum; 2009 Jun; 8(2):108-15. PubMed ID: 19052829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Difference of Neural Networks between Bimanual Antiphase and In-Phase Upper Limb Movements: A Preliminary Functional Magnetic Resonance Imaging Study.
    Lin Q; Li H; Mao YR; Lo WL; Zhao JL; Chen L; Leng Y; Huang DF; Li L
    Behav Neurol; 2017; 2017():8041962. PubMed ID: 28701822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the cerebellum in implicit motor skill learning: a PET study.
    Matsumura M; Sadato N; Kochiyama T; Nakamura S; Naito E; Matsunami K; Kawashima R; Fukuda H; Yonekura Y
    Brain Res Bull; 2004 Jul; 63(6):471-83. PubMed ID: 15249112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dexterous movement complexity and cerebellar activation: a meta-analysis.
    Chan RC; Huang J; Di X
    Brain Res Rev; 2009 Mar; 59(2):316-23. PubMed ID: 18973773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of area MT in bimanual finger movements in left-handers: an fMRI study.
    Müller K; Kleiser R; Mechsner F; Seitz RJ
    Eur J Neurosci; 2011 Oct; 34(8):1301-9. PubMed ID: 21933287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebellar Activation During Simple and Complex Bimanual Coordination: an Activation Likelihood Estimation (ALE) Meta-analysis.
    van Dun K; Brinkmann P; Depestele S; Verstraelen S; Meesen R
    Cerebellum; 2022 Dec; 21(6):987-1013. PubMed ID: 34595608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perceptual influence on bimanual coordination: an fMRI study.
    Müller K; Kleiser R; Mechsner F; Seitz RJ
    Eur J Neurosci; 2009 Jul; 30(1):116-24. PubMed ID: 19558604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebral midline structures in bimanual coordination.
    Stephan KM; Binkofski F; Posse S; Seitz RJ; Freund HJ
    Exp Brain Res; 1999 Sep; 128(1-2):243-9. PubMed ID: 10473767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.