These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 15094771)

  • 1. The role of c-myc in regulation of translation initiation.
    Schmidt EV
    Oncogene; 2004 Apr; 23(18):3217-21. PubMed ID: 15094771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of c-myc in cellular growth control.
    Schmidt EV
    Oncogene; 1999 May; 18(19):2988-96. PubMed ID: 10378694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of translation in neoplastic transformation from a pathologist's point of view.
    Rosenwald IB
    Oncogene; 2004 Apr; 23(18):3230-47. PubMed ID: 15094773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High affinity RNA for mammalian initiation factor 4E interferes with mRNA-cap binding and inhibits translation.
    Mochizuki K; Oguro A; Ohtsu T; Sonenberg N; Nakamura Y
    RNA; 2005 Jan; 11(1):77-89. PubMed ID: 15611299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. eIF4E--from translation to transformation.
    Mamane Y; Petroulakis E; Rong L; Yoshida K; Ler LW; Sonenberg N
    Oncogene; 2004 Apr; 23(18):3172-9. PubMed ID: 15094766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targets and mechanisms for the regulation of translation in malignant transformation.
    Clemens MJ
    Oncogene; 2004 Apr; 23(18):3180-8. PubMed ID: 15094767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. c-Myc and eIF4F are components of a feedforward loop that links transcription and translation.
    Lin CJ; Cencic R; Mills JR; Robert F; Pelletier J
    Cancer Res; 2008 Jul; 68(13):5326-34. PubMed ID: 18593934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential expression of Myc1 and Myc2 isoforms in cells transformed by eIF4E: evidence for internal ribosome repositioning in the human c-myc 5'UTR.
    Carter PS; Jarquin-Pardo M; De Benedetti A
    Oncogene; 1999 Jul; 18(30):4326-35. PubMed ID: 10439040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of Myc-dependent apoptosis by eukaryotic translation initiation factor 4E requires cyclin D1.
    Tan A; Bitterman P; Sonenberg N; Peterson M; Polunovsky V
    Oncogene; 2000 Mar; 19(11):1437-47. PubMed ID: 10723135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activated eIF4E-binding protein slows G1 progression and blocks transformation by c-myc without inhibiting cell growth.
    Lynch M; Fitzgerald C; Johnston KA; Wang S; Schmidt EV
    J Biol Chem; 2004 Jan; 279(5):3327-39. PubMed ID: 14607835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of 4E-BP1 sensitizes U87 glioblastoma xenograft tumors to irradiation by decreasing hypoxia tolerance.
    Dubois L; Magagnin MG; Cleven AH; Weppler SA; Grenacher B; Landuyt W; Lieuwes N; Lambin P; Gorr TA; Koritzinsky M; Wouters BG
    Int J Radiat Oncol Biol Phys; 2009 Mar; 73(4):1219-27. PubMed ID: 19251093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Candidate tumor suppressor DDX3 RNA helicase specifically represses cap-dependent translation by acting as an eIF4E inhibitory protein.
    Shih JW; Tsai TY; Chao CH; Wu Lee YH
    Oncogene; 2008 Jan; 27(5):700-14. PubMed ID: 17667941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional repression of the eukaryotic initiation factor 4E gene by wild type p53.
    Zhu N; Gu L; Findley HW; Zhou M
    Biochem Biophys Res Commun; 2005 Oct; 335(4):1272-9. PubMed ID: 16112647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eukaryotic initiation factor 4E variants alter the morphology, proliferation, and colony-formation properties of MDA-MB-435 cancer cells.
    Goldson TM; Vielhauer G; Staub E; Miller S; Shim H; Hagedorn CH
    Mol Carcinog; 2007 Jan; 46(1):71-84. PubMed ID: 17091471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. eIF4E activation is commonly elevated in advanced human prostate cancers and significantly related to reduced patient survival.
    Graff JR; Konicek BW; Lynch RL; Dumstorf CA; Dowless MS; McNulty AM; Parsons SH; Brail LH; Colligan BM; Koop JW; Hurst BM; Deddens JA; Neubauer BL; Stancato LF; Carter HW; Douglass LE; Carter JH
    Cancer Res; 2009 May; 69(9):3866-73. PubMed ID: 19383915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-oncogenic potential of the eIF4E-binding proteins.
    Martineau Y; Azar R; Bousquet C; Pyronnet S
    Oncogene; 2013 Feb; 32(6):671-7. PubMed ID: 22508483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of eIF4 in cell proliferation.
    Flynn A; Proud CG
    Cancer Surv; 1996; 27():293-310. PubMed ID: 8909806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenethyl isothiocyanate, a cancer chemopreventive constituent of cruciferous vegetables, inhibits cap-dependent translation by regulating the level and phosphorylation of 4E-BP1.
    Hu J; Straub J; Xiao D; Singh SV; Yang HS; Sonenberg N; Vatsyayan J
    Cancer Res; 2007 Apr; 67(8):3569-73. PubMed ID: 17440067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. c-Myc creates an activation loop by transcriptionally repressing its own functional inhibitor, hMad4, in young fibroblasts, a loop lost in replicatively senescent fibroblasts.
    Marcotte R; Chen JM; Huard S; Wang E
    J Cell Biochem; 2005 Dec; 96(5):1071-85. PubMed ID: 16167342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shiga toxins activate translational regulation pathways in intestinal epithelial cells.
    Colpoys WE; Cochran BH; Carducci TM; Thorpe CM
    Cell Signal; 2005 Jul; 17(7):891-9. PubMed ID: 15763431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.