BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 15095024)

  • 21. Bacterial species selective toxicity of two isomeric alpha/beta-peptides: role of membrane lipids.
    Epand RF; Schmitt MA; Gellman SH; Sen A; Auger M; Hughes DW; Epand RM
    Mol Membr Biol; 2005; 22(6):457-69. PubMed ID: 16373318
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chitosan kills bacteria through cell membrane damage.
    Liu H; Du Y; Wang X; Sun L
    Int J Food Microbiol; 2004 Sep; 95(2):147-55. PubMed ID: 15282127
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Membrane physical state as key parameter for the resistance of the gram-negative Bradyrhizobium japonicum to hyperosmotic treatments.
    Beney L; Simonin H; Mille Y; Gervais P
    Arch Microbiol; 2007 May; 187(5):387-96. PubMed ID: 17160674
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of sperm plasma membrane properties after cholesterol modification: consequences for cryopreservation of rainbow trout spermatozoa.
    Müller K; Müller P; Pincemy G; Kurz A; Labbe C
    Biol Reprod; 2008 Mar; 78(3):390-9. PubMed ID: 18003944
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of Escherichia coli cell damage induced by HPCD using microscopies and fluorescent staining.
    Liao H; Zhang F; Liao X; Hu X; Chen Y; Deng L
    Int J Food Microbiol; 2010 Nov; 144(1):169-76. PubMed ID: 20932592
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cholesterol supports headgroup superlattice domain formation in fluid phospholipid/cholesterol bilayers.
    Cannon B; Lewis A; Metze J; Thiagarajan V; Vaughn MW; Somerharju P; Virtanen J; Huang J; Cheng KH
    J Phys Chem B; 2006 Mar; 110(12):6339-50. PubMed ID: 16553452
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of the mode of action of polyhexamethylene biguanide against Listeria innocua by Fourier transformed infrared spectroscopy and fluorescence anisotropy analysis.
    Chadeau E; Dumas E; Adt I; Degraeve P; Noël C; Girodet C; Oulahal N
    Can J Microbiol; 2012 Dec; 58(12):1353-61. PubMed ID: 23210992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Membrane phase behavior of Escherichia coli during desiccation, rehydration, and growth recovery.
    Scherber CM; Schottel JL; Aksan A
    Biochim Biophys Acta; 2009 Nov; 1788(11):2427-35. PubMed ID: 19716799
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How does plasmid DNA penetrate cell membranes in artificial transformation process of Escherichia coli?
    Panja S; Aich P; Jana B; Basu T
    Mol Membr Biol; 2008 Aug; 25(5):411-22. PubMed ID: 18651316
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluidity of chicken ventricular plasma membranes during development in-ovo and after birth: spin labelling and fluorescence studies.
    Daveloose D; Vezin H; Basse F; Viret J
    J Mol Cell Cardiol; 1993 Dec; 25(12):1439-44. PubMed ID: 8158663
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequence of occurring damages in yeast plasma membrane during dehydration and rehydration: mechanisms of cell death.
    Simonin H; Beney L; Gervais P
    Biochim Biophys Acta; 2007 Jun; 1768(6):1600-10. PubMed ID: 17466936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Short-lived fluorescence component of DPH reports on lipid--water interface of biological membranes.
    Konopásek I; Vecer J; Strzalka K; Amler E
    Chem Phys Lipids; 2004 Jul; 130(2):135-44. PubMed ID: 15172830
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of silver nanoparticles on the fluidity of bilayer in phospholipid liposome.
    Park SH; Oh SG; Mun JY; Han SS
    Colloids Surf B Biointerfaces; 2005 Aug; 44(2-3):117-22. PubMed ID: 16040237
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Disaccharide modulation of the mitochondrial membrane fluidity changes induced by the membrane potential.
    Ricchelli F; Camerin M; Beghetto C; Crisma M; Moretto V; Gobbo S; Salvato B; Salet C; Moreno G
    IUBMB Life; 2001 Feb; 51(2):111-6. PubMed ID: 11463162
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Temperature-dependent structural rearrangements in the cytoplasmic membranes of Escherichia coli cells].
    Kirillov VA; Zaichkin EI; Konev SV
    Tsitologiia; 1979 Apr; 21(4):447-51. PubMed ID: 377737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transmission electron microscopic observations of membrane effects of antibiotic cecropin B on Escherichia coli.
    Chen HM; Chan SC; Lee JC; Chang CC; Murugan M; Jack RW
    Microsc Res Tech; 2003 Dec; 62(5):423-30. PubMed ID: 14601148
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control over micro-fluidity of liposomal membranes by hybridizing metal nanoparticles.
    Park SH; Oh SG; Suh KD; Han SH; Chung DJ; Mun JY; Han SS; Kim JW
    Colloids Surf B Biointerfaces; 2009 Apr; 70(1):108-13. PubMed ID: 19162452
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monitoring redox-dependent contribution of lipids in Fourier transform infrared difference spectra of complex I from Escherichia coli.
    Hielscher R; Wenz T; Stolpe S; Hunte C; Friedrich T; Hellwig P
    Biopolymers; 2006 Jul; 82(4):291-4. PubMed ID: 16358245
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorescent probes DPH, TMA-DPH and C17-HC induce erythrocyte exovesiculation.
    Saldanha C; Santos NC; Martins-Silva J
    J Membr Biol; 2002 Nov; 190(1):75-82. PubMed ID: 12422273
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Relationship among growth temperature, membrane fatty acid composition and pressure resistance of Escherichia coli].
    Li ZJ
    Wei Sheng Wu Xue Bao; 2005 Jun; 45(3):426-30. PubMed ID: 15989240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.