BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 15095237)

  • 1. Lymph pools in the basement, sump pumps in the attic: the anuran dilemma for lymph movement.
    Hillman SS; Hedrick MS; Withers PC; Drewes RC
    Physiol Biochem Zool; 2004; 77(2):161-73. PubMed ID: 15095237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional roles for the compartmentalization of the subcutaneous lymphatic sacs in anuran amphibians.
    Hillman SS; Withers PC; Hedrick MS; Drewes RC
    Physiol Biochem Zool; 2005; 78(4):515-23. PubMed ID: 15957106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique role of skeletal muscle contraction in vertical lymph movement in anurans.
    Drewes RC; Hedrick MS; Hillman SS; Withers PC
    J Exp Biol; 2007 Nov; 210(Pt 22):3931-9. PubMed ID: 17981860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of blood volume following hypovolemic challenge in vertebrates: Transcapillary versus lymphatic mechanisms.
    Hillman SS; Drewes RC; Hedrick MS
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Apr; 254():110878. PubMed ID: 33358925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulmonary compliance and lung volume varies with ecomorphology in anuran amphibians: implications for ventilatory-assisted lymph flux.
    Hedrick MS; Hillman SS; Drewes RC; Withers PC
    J Exp Biol; 2011 Oct; 214(Pt 19):3279-85. PubMed ID: 21900475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interspecific comparisons of lymph volume and lymphatic fluxes: do lymph reserves and lymph mobilization capacities vary in anurans from different environments?
    Hillman SS; Drewes RC; Hedrick MS; Withers PC
    Physiol Biochem Zool; 2011; 84(3):268-76. PubMed ID: 21527817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lung ventilation contributes to vertical lymph movement in anurans.
    Hedrick MS; Drewes RC; Hillman SS; Withers PC
    J Exp Biol; 2007 Nov; 210(Pt 22):3940-5. PubMed ID: 17981861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lymph flux rates from various lymph sacs in the cane toad Rhinella marina: an experimental evaluation of the roles of compliance, skeletal muscles and the lungs in the movement of lymph.
    Hillman SS; Hedrick MS; Drewes RC; Withers PC
    J Exp Biol; 2010 Sep; 213(Pt 18):3161-6. PubMed ID: 20802118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualising lymph movement in anuran amphibians with computed tomography.
    Hedrick MS; Hansen K; Wang T; Lauridsen H; Thygesen J; Pedersen M
    J Exp Biol; 2014 Sep; 217(Pt 17):2990-3. PubMed ID: 25165132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of vascular and interstitial compliance and vascular volume in the regulation of blood volume in two species of anuran.
    Hillman SS; Degrauw EA; Hoagland T; Hancock T; Withers P
    Physiol Biochem Zool; 2010; 83(1):55-67. PubMed ID: 19929686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anuran amphibians as comparative models for understanding extreme dehydration tolerance: a unique negative feedback lymphatic mechanism for blood volume regulation.
    Hillman SS
    Am J Physiol Regul Integr Comp Physiol; 2018 Oct; 315(4):R790-R798. PubMed ID: 29874095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulmonary compliance and lung volume are related to terrestriality in anuran amphibians.
    Withers PC; Hedrick MS; Drewes RC; Hillman SS
    Physiol Biochem Zool; 2014; 87(3):374-83. PubMed ID: 24769702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lymph circulation: physiology, pharmacology, and biomechanics.
    Reddy NP
    Crit Rev Biomed Eng; 1986; 14(1):45-91. PubMed ID: 3524994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lymphatic regulation in nonmammalian vertebrates.
    Hedrick MS; Hillman SS; Drewes RC; Withers PC
    J Appl Physiol (1985); 2013 Aug; 115(3):297-308. PubMed ID: 23640588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capillary blood flow and fluid exchange regulation.
    Rodbard S
    Bibl Anat; 1973; 12():366-75. PubMed ID: 4790373
    [No Abstract]   [Full Text] [Related]  

  • 16. The energetics of lymph formation.
    Guyton AC; Barber BJ
    Lymphology; 1980 Dec; 13(4):173-6. PubMed ID: 7010000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of lymph flow by relating lymphatic pump function to passive flow curves.
    Gallagher H; Garewal D; Drake RE; Gabel JC
    Lymphology; 1993 Jun; 26(2):56-60. PubMed ID: 8355518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Terminal endothelial cells of lymph capillaries as active transport structures involved in the formation of lymph in rat skin.
    Cornford ME; Oldendorf WH
    Lymphology; 1993 Jun; 26(2):67-78. PubMed ID: 8355520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A two-dimensional computational model of lymph transport across primary lymphatic valves.
    Galie P; Spilker RL
    J Biomech Eng; 2009 Nov; 131(11):111004. PubMed ID: 20353255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The physical movement of urine from the kidneys to the urinary bladder and bladder compliance in two anurans.
    Martin JA; Hillman SS
    Physiol Biochem Zool; 2009; 82(2):163-9. PubMed ID: 19199556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.