These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 15095446)

  • 1. Optimization of the separation of a group of triazine herbicides by micellar capillary electrophoresis using experimental design and artificial neural networks.
    Frías-García S; Sánchez MJ; Rodríguez- Delgado MA
    Electrophoresis; 2004 Apr; 25(7-8):1042-50. PubMed ID: 15095446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of a solid-phase microextraction procedure for the determination of herbicides by micellar electrokinetic chromatography.
    Frías-García S; Sánchez MJ; Rodríguez-Delgado MA
    J Sep Sci; 2004 Jun; 27(9):660-6. PubMed ID: 15387460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting and evaluating separation quality of micellar electrokinetic capillary chromatography by artificial neural networks.
    Liu BF; Zhang JF; Lu YT
    Electrophoresis; 2002 May; 23(9):1279-84. PubMed ID: 12007127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of the separation of organic explosives by capillary electrophoresis with artificial neural networks.
    Casamento S; Kwok B; Roux C; Dawson M; Doble P
    J Forensic Sci; 2003 Sep; 48(5):1075-83. PubMed ID: 14535670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of separation and determination of triazines by micellar electrokinetic capillary chromatography and nonaqueous capillary electrophoresis: application to residue analysis in natural waters.
    Carabias-Martínez R; Rodríguez-Gonzalo E; Domínguez-Alvárez J; Hernández-Méndez J
    Electrophoresis; 2002 Feb; 23(3):494-501. PubMed ID: 11870752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation and analysis of triazine herbcide residues by capillary electrophoresis.
    Elbashir AA; Aboul-Enein HY
    Biomed Chromatogr; 2015 Jun; 29(6):835-42. PubMed ID: 25515940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of eight triazine herbicide residues in cereal and vegetable by micellar electrokinetic capillary chromatography with on-line sweeping.
    Fang R; Chen GH; Yi LX; Shao YX; Zhang L; Cai QH; Xiao J
    Food Chem; 2014 Feb; 145():41-8. PubMed ID: 24128447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the herbicide metribuzin and its major conversion products in soil by micellar electrokinetic chromatography.
    Huertas-Pérez JF; del Olmo Iruela M; García-Campaña AM; González-Casado A; Sánchez-Navarro A
    J Chromatogr A; 2006 Jan; 1102(1-2):280-6. PubMed ID: 16289086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction for the determination of triazine herbicides in water samples by microemulsion electrokinetic chromatography.
    Li RH; Liu DH; Yang ZH; Zhou ZQ; Wang P
    Electrophoresis; 2012 Jul; 33(14):2176-83. PubMed ID: 22821495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of multivariate analysis for optimization of separation parameters and prediction of migration time, resolution, and resolution per unit time in micellar electrokinetic chromatography.
    Williams AA; Fakayode SO; Huang X; Warner IM
    Electrophoresis; 2006 Nov; 27(21):4127-40. PubMed ID: 17075942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of the separation of ionizable compounds in micellar electrokinetic chromatography by simultaneous change of pH and SDS concentration.
    Téllez A; Fuguet E; Rosés M
    Electrophoresis; 2007 Oct; 28(20):3712-21. PubMed ID: 17941120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and optimization of an analytical method for the determination of UV filters in suntan lotions based on microemulsion electrokinetic chromatography.
    Klampfl CW; Leitner T; Hilder EF
    Electrophoresis; 2002 Aug; 23(15):2424-9. PubMed ID: 12210198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization and validation of a micellar electrokinetic chromatographic method for the analysis of florfenicol.
    Hillaert S; Van den Bossche W
    J Pharm Biomed Anal; 2004 Nov; 36(3):437-40. PubMed ID: 15522515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of a rapid micellar electrokinetic capillary chromatographic method for the simultaneous determination of isoniazid and pyridoxine hydrochloride in pharmaceutical formulation.
    Nemutlu E; Celebier M; Uyar B; Altinöz S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Jul; 854(1-2):35-42. PubMed ID: 17481971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retention modeling and resolution optimization for a group of N-phenylpyrazole derivatives in micellar electrokinetic chromatography using empirical and physicochemical models.
    García-Ruiz C; Jiménez O; Marina ML
    Electrophoresis; 2003 Jan; 24(3):325-35. PubMed ID: 12569524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of phenolic acids and flavone natural antioxidants by two-dimensional method combining liquid chromatography and micellar electrokinetic capillary chromatography.
    Cesla P; Fischer J; Jandera P
    Electrophoresis; 2010 Jul; 31(13):2200-10. PubMed ID: 20593394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization and validation of a nonaqueous micellar electrokinetic chromatography method for determination of polycyclic musks in perfumes.
    Lopez-Gazpio J; Garcia-Arrona R; Ostra M; Millán E
    J Sep Sci; 2012 Jun; 35(10-11):1344-50. PubMed ID: 22733515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Univariate and multivariate optimization of the separation conditions for the analysis of five bisphenols by micellar electrokinetic chromatography.
    Felhofer J; Hanrahan G; García CD
    Talanta; 2009 Jan; 77(3):1172-8. PubMed ID: 19064108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of experimental design and radial basis function neural network to the separation and determination of active components in traditional Chinese medicines by capillary electrophoresis.
    Liu H; Wen Y; Luan F; Gao Y
    Anal Chim Acta; 2009 Apr; 638(1):88-93. PubMed ID: 19298884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation and determination of isoflavones in red clover by micellar electrokinetic capillary chromatography.
    Zhang Y; Chen J; Zhao L; Shi YP
    Biomed Chromatogr; 2007 Sep; 21(9):987-92. PubMed ID: 17474156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.