These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 15095870)

  • 1. Mechanism of thermostabilization in a designed cold shock protein with optimized surface electrostatic interactions.
    Makhatadze GI; Loladze VV; Gribenko AV; Lopez MM
    J Mol Biol; 2004 Feb; 336(4):929-42. PubMed ID: 15095870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the charge-charge interactions in defining stability and halophilicity of the CspB proteins.
    Gribenko AV; Makhatadze GI
    J Mol Biol; 2007 Feb; 366(3):842-56. PubMed ID: 17188709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein.
    Mueller U; Perl D; Schmid FX; Heinemann U
    J Mol Biol; 2000 Apr; 297(4):975-88. PubMed ID: 10736231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of the cold shock protein CspB from Bacillus subtilis by evolutionary optimization of Coulombic interactions.
    Wunderlich M; Martin A; Schmid FX
    J Mol Biol; 2005 Apr; 347(5):1063-76. PubMed ID: 15784264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structures of mutant forms of the Bacillus caldolyticus cold shock protein differing in thermal stability.
    Delbrück H; Mueller U; Perl D; Schmid FX; Heinemann U
    J Mol Biol; 2001 Oct; 313(2):359-69. PubMed ID: 11800562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic stabilization of a thermophilic cold shock protein.
    Perl D; Schmid FX
    J Mol Biol; 2001 Oct; 313(2):343-57. PubMed ID: 11800561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T-rich DNA single strands bind to a preformed site on the bacterial cold shock protein Bs-CspB.
    Max KE; Zeeb M; Bienert R; Balbach J; Heinemann U
    J Mol Biol; 2006 Jul; 360(3):702-14. PubMed ID: 16780871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two exposed amino acid residues confer thermostability on a cold shock protein.
    Perl D; Mueller U; Heinemann U; Schmid FX
    Nat Struct Biol; 2000 May; 7(5):380-3. PubMed ID: 10802734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic properties of an extremely rapid protein folding reaction.
    Schindler T; Schmid FX
    Biochemistry; 1996 Dec; 35(51):16833-42. PubMed ID: 8988022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized variants of the cold shock protein from in vitro selection: structural basis of their high thermostability.
    Max KE; Wunderlich M; Roske Y; Schmid FX; Heinemann U
    J Mol Biol; 2007 Jun; 369(4):1087-97. PubMed ID: 17481655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic contributions to the stability of a thermophilic cold shock protein.
    Zhou HX; Dong F
    Biophys J; 2003 Apr; 84(4):2216-22. PubMed ID: 12668430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-vitro selection of highly stabilized protein variants with optimized surface.
    Martin A; Sieber V; Schmid FX
    J Mol Biol; 2001 Jun; 309(3):717-26. PubMed ID: 11397091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal unfolding of the DNA-binding protein Sso7d from the hyperthermophile Sulfolobus solfataricus.
    Knapp S; Karshikoff A; Berndt KD; Christova P; Atanasov B; Ladenstein R
    J Mol Biol; 1996 Dec; 264(5):1132-44. PubMed ID: 9000635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of core hydrophobicity and packing in the hyperthermophile proteins Sac7d and Sso7d.
    Clark AT; McCrary BS; Edmondson SP; Shriver JW
    Biochemistry; 2004 Mar; 43(10):2840-53. PubMed ID: 15005619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An electrostatic basis for the stability of thermophilic proteins.
    Dominy BN; Minoux H; Brooks CL
    Proteins; 2004 Oct; 57(1):128-41. PubMed ID: 15326599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A theoretical analysis on characteristics of protein structures induced by cold denaturation.
    Oshima H; Yoshidome T; Amano K; Kinoshita M
    J Chem Phys; 2009 Nov; 131(20):205102. PubMed ID: 19947708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic and kinetic determinants of Thermotoga maritima cold shock protein stability: a structural and dynamic analysis.
    Motono C; Gromiha MM; Kumar S
    Proteins; 2008 May; 71(2):655-69. PubMed ID: 17975840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of ionic strength on protein stability: the cold shock protein family.
    Dominy BN; Perl D; Schmid FX; Brooks CL
    J Mol Biol; 2002 May; 319(2):541-54. PubMed ID: 12051927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unfolding thermodynamics of Trp-cage, a 20 residue miniprotein, studied by differential scanning calorimetry and circular dichroism spectroscopy.
    Streicher WW; Makhatadze GI
    Biochemistry; 2007 Mar; 46(10):2876-80. PubMed ID: 17295518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The correlation between protein stability and dipole moment: a critical test.
    Wunderlich M; Schmid FX
    Protein Eng Des Sel; 2006 Aug; 19(8):355-8. PubMed ID: 16720692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.