These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 15095926)
1. Tolerance to creosote oil of bacteria of the genus Pseudomonas isolated from the wood of coniferous trees. Gajewska J; Miszczyk A; Markiewicz Z Acta Microbiol Pol; 2003; 52(4):387-94. PubMed ID: 15095926 [TBL] [Abstract][Full Text] [Related]
2. Observations on Pseudomonas sp. highly tolerant to creosote, isolated from railway wood sleepers. Janota-Bassalik L; Bohdanowicz-Strucińska B; Noras A Acta Microbiol Pol B; 1971; 3(3):143-53. PubMed ID: 4940211 [No Abstract] [Full Text] [Related]
3. Characteristics of bacterial strains inhabiting the wood of coniferous trees. Gajewska J; Miszczyk A; Markiewicz Z Pol J Microbiol; 2004; 53(4):283-6. PubMed ID: 15790079 [TBL] [Abstract][Full Text] [Related]
4. Fungal bioremediation of creosote-treated wood: a laboratory scale study on creosote components degradation by Pleurotus ostreatus mycelium. Polcaro CM; Brancaleoni E; Donati E; Frattoni M; Galli E; Migliore L; Rapanà P Bull Environ Contam Toxicol; 2008 Aug; 81(2):180-4. PubMed ID: 18389164 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of solvent tolerance of microorganisms by microcalorimetry. Chen HL; Yao J; Wang L; Wang F; Bramanti E; Maskow T; Zaray G Chemosphere; 2009 Mar; 74(10):1407-11. PubMed ID: 19084259 [TBL] [Abstract][Full Text] [Related]
6. Fungicidal value of wood tar from pyrolysis of treated wood. Mazela B Waste Manag; 2007; 27(4):461-5. PubMed ID: 17011772 [TBL] [Abstract][Full Text] [Related]
7. Wood creosote prevents CRF-induced motility via 5-HT3 receptors in proximal and 5-HT4 receptors in distal colon in rats. Ataka K; Kuge T; Fujino K; Takahashi T; Fujimiya M Auton Neurosci; 2007 May; 133(2):136-45. PubMed ID: 17182287 [TBL] [Abstract][Full Text] [Related]
8. Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil. Cycoń M; Wójcik M; Piotrowska-Seget Z Chemosphere; 2009 Jul; 76(4):494-501. PubMed ID: 19356785 [TBL] [Abstract][Full Text] [Related]
9. Residential and biological exposure assessment of chemicals from a wood treatment plant. Dahlgren J; Takhar H; Schecter A; Schmidt R; Horsak R; Paepke O; Warshaw R; Lee A; Anderson-Mahoney P Chemosphere; 2007 Apr; 67(9):S279-85. PubMed ID: 17234249 [TBL] [Abstract][Full Text] [Related]
10. [Characteristics of plasmid pBS271 controlling epsilon-caprolactam degradation by bacteria in the genus Pseudomonas]. Boronin AM; Grishchenkov VG; Kulakov LA; Naumova RP Mikrobiologiia; 1986; 55(2):231-6. PubMed ID: 3724565 [TBL] [Abstract][Full Text] [Related]
11. Wood‑feeding termites as an obscure yet promising source of bacteria for biodegradation and detoxification of creosote-treated wood along with methane production enhancement. Ali SS; Mustafa AM; Sun J Bioresour Technol; 2021 Oct; 338():125521. PubMed ID: 34273631 [TBL] [Abstract][Full Text] [Related]
12. Stress-induced breakdown of intestinal barrier function in the rat: reversal by wood creosote. Kuge T; Greenwood-Van Meerveld B; Sokabe M Life Sci; 2006 Jul; 79(9):913-8. PubMed ID: 16643959 [TBL] [Abstract][Full Text] [Related]
13. Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. strain DR2. Song JH; Jeon CO; Choi MH; Yoon SC; Park W J Microbiol Biotechnol; 2008 Aug; 18(8):1408-15. PubMed ID: 18756101 [TBL] [Abstract][Full Text] [Related]
14. Potential of hexadecane-utilizing soil-microorganisms for growth on hexadecanol, hexadecanal and hexadecanoic acid as sole sources of carbon and energy. Dashti N; Al-Awadhi H; Khanafer M; Abdelghany S; Radwan S Chemosphere; 2008 Jan; 70(3):475-9. PubMed ID: 17675208 [TBL] [Abstract][Full Text] [Related]
15. Degradation of lignin by Pseudomonas Migula isolated from intestinal contents of Paranthrene tabaniformis Rott. Danilewicz K; Tomaszewski M Acta Microbiol Pol B; 1972; 4(1):37-46. PubMed ID: 4552043 [No Abstract] [Full Text] [Related]
16. Biodegradation of creosote-treated wood by two novel constructed microbial consortia for the enhancement of methane production. Ali SS; Mustafa AM; Kornaros M; Sun J; Khalil M; El-Shetehy M Bioresour Technol; 2021 Mar; 323():124544. PubMed ID: 33360721 [TBL] [Abstract][Full Text] [Related]
17. Degradation of carbazole and its derivatives by a Pseudomonas sp. Li L; Li Q; Li F; Shi Q; Yu B; Liu F; Xu P Appl Microbiol Biotechnol; 2006 Dec; 73(4):941-8. PubMed ID: 16896599 [TBL] [Abstract][Full Text] [Related]
18. Characterization of chromate-resistant and -reducing bacteria by traditional means and by a high-throughput phenomic technique for bioremediation purposes. Viti C; Decorosi F; Tatti E; Giovannetti L Biotechnol Prog; 2007; 23(3):553-9. PubMed ID: 17385890 [TBL] [Abstract][Full Text] [Related]
19. Isolation of a soil bacterium capable of biodegradation and detoxification of endosulfan and endosulfan sulfate. Lee JB; Sohn HY; Shin KS; Jo MS; Kim JE; Lee SW; Shin JW; Kum EJ; Kwon GS J Agric Food Chem; 2006 Nov; 54(23):8824-8. PubMed ID: 17090129 [TBL] [Abstract][Full Text] [Related]
20. Metabolism of chlorinated biphenyls: use of 3,3'- and 3,5-dichlorobiphenyl as sole sources of carbon by natural species of Ralstonia and Pseudomonas. Adebusoye SA; Ilori MO; Picardal FW; Amund OO Chemosphere; 2008 Jan; 70(4):656-63. PubMed ID: 17706746 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]