These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 15095928)

  • 1. Hydrocarbon bioremediation potential of an unimpacted Kuwaiti oil-field environment.
    Obuekwe C; Hourani G; Radwan S
    Acta Microbiol Pol; 2003; 52(4):405-17. PubMed ID: 15095928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-temperature hydrocarbon biodegradation activities in Kuwaiti desert soil samples.
    Obuekwe CO; Hourani G; Radwan SS
    Folia Microbiol (Praha); 2001; 46(6):535-9. PubMed ID: 11898344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of nickel on the mineralization of hydrocarbons by indigenous microbiota in Kuwait soils.
    Al-Saleh ES; Obuekwe C
    J Basic Microbiol; 2009 Jun; 49(3):256-63. PubMed ID: 19219899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrocarbon-utilizing microorganisms naturally associated with sawdust.
    Ali N; Eliyas M; Al-Sarawi H; Radwan SS
    Chemosphere; 2011 May; 83(9):1268-72. PubMed ID: 21507457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioremediation of coastal areas 5 years after the Nakhodka oil spill in the Sea of Japan: isolation and characterization of hydrocarbon-degrading bacteria.
    Chaerun SK; Tazaki K; Asada R; Kogure K
    Environ Int; 2004 Sep; 30(7):911-22. PubMed ID: 15196839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enumeration of petroleum-degrading marine and estuarine microorganisms by the most probable number method.
    Mills AL; Breuil C; Colwell RR
    Can J Microbiol; 1978 May; 24(5):522-7. PubMed ID: 350362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of bacteria from crude petroleum oil contaminated soil and their potential to degrade diesel fuel.
    Saadoun I
    J Basic Microbiol; 2002; 42(6):420-8. PubMed ID: 12442304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential of hexadecane-utilizing soil-microorganisms for growth on hexadecanol, hexadecanal and hexadecanoic acid as sole sources of carbon and energy.
    Dashti N; Al-Awadhi H; Khanafer M; Abdelghany S; Radwan S
    Chemosphere; 2008 Jan; 70(3):475-9. PubMed ID: 17675208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of indigenous bacterial and fungal soil populations in the biodegradation of crude oil in a desert soil.
    Embar K; Forgacs C; Sivan A
    Biodegradation; 2006 Aug; 17(4):369-77. PubMed ID: 16570229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Bio-remediation techniques of crude oil contaminated soils].
    Li P; Guo S; Sun T; Tai P; Zhang C; Bai Y; Sun Q; Sheng P
    Ying Yong Sheng Tai Xue Bao; 2002 Nov; 13(11):1455-8. PubMed ID: 12625007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between soil microbial diversity and bioremediation process at an oil refinery.
    Płaza G; Ulfig K; Brigmon RL
    Acta Microbiol Pol; 2003; 52(2):173-82. PubMed ID: 14594404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Synergy between fungi and bacteria in fungi-bacteria augmented remediation of petroleum-contaminated soil].
    Han HL; Tang J; Jiang H; Zhang ML; Liu Z
    Huan Jing Ke Xue; 2008 Jan; 29(1):189-95. PubMed ID: 18441939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of hydrocarbon degrading bacteria from soils contaminated with crude oil spills.
    Mittal A; Singh P
    Indian J Exp Biol; 2009 Sep; 47(9):760-5. PubMed ID: 19957890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms.
    Chaillan F; Le Flèche A; Bury E; Phantavong YH; Grimont P; Saliot A; Oudot J
    Res Microbiol; 2004 Sep; 155(7):587-95. PubMed ID: 15313261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Managed bioremediation of soil contaminated with crude oil soil chemistry and microbial ecology three years later.
    Duncan K; Levetin E; Wells H; Jennings E; Hettenbach S; Bailey S; Lawlor K; Sublette K; Berton Fisher J
    Appl Biochem Biotechnol; 1997; 63-65():879-89. PubMed ID: 18576141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crude oil degradation efficiency of a recombinant Acinetobacter baumannii strain and its survival in crude oil-contaminated soil microcosm.
    Mishra S; Sarma PM; Lal B
    FEMS Microbiol Lett; 2004 Jun; 235(2):323-31. PubMed ID: 15183881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the tropical grass Brachiaria brizantha (Hochst. ex A. Rich.) Stapf on microbial population and activity in petroleum-contaminated soil.
    Merkl N; Schultze-Kraft R; Arias M
    Microbiol Res; 2006; 161(1):80-91. PubMed ID: 16338595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of hydrocarbon contamination by immobilized bacterial cells.
    Rahman RN; Ghaza FM; Salleh AB; Basri M
    J Microbiol; 2006 Jun; 44(3):354-9. PubMed ID: 16820766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs.
    Jones DM; Head IM; Gray ND; Adams JJ; Rowan AK; Aitken CM; Bennett B; Huang H; Brown A; Bowler BF; Oldenburg T; Erdmann M; Larter SR
    Nature; 2008 Jan; 451(7175):176-80. PubMed ID: 18075503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The abundance of nahAc genes correlates with the 14C-naphthalene mineralization potential in petroleum hydrocarbon-contaminated oxic soil layers.
    Tuomi PM; Salminen JM; Jørgensen KS
    FEMS Microbiol Ecol; 2004 Dec; 51(1):99-107. PubMed ID: 16329859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.