These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 15096512)
1. A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B. Tian M; Huitema E; Da Cunha L; Torto-Alalibo T; Kamoun S J Biol Chem; 2004 Jun; 279(25):26370-7. PubMed ID: 15096512 [TBL] [Abstract][Full Text] [Related]
2. A Second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato. Tian M; Benedetti B; Kamoun S Plant Physiol; 2005 Jul; 138(3):1785-93. PubMed ID: 15980196 [TBL] [Abstract][Full Text] [Related]
3. A two disulfide bridge Kazal domain from Phytophthora exhibits stable inhibitory activity against serine proteases of the subtilisin family. Tian M; Kamoun S BMC Biochem; 2005 Aug; 6():15. PubMed ID: 16117831 [TBL] [Abstract][Full Text] [Related]
4. A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Tian M; Win J; Song J; van der Hoorn R; van der Knaap E; Kamoun S Plant Physiol; 2007 Jan; 143(1):364-77. PubMed ID: 17085509 [TBL] [Abstract][Full Text] [Related]
5. Cleavage of a pathogen apoplastic protein by plant subtilases activates host immunity. Wang S; Xing R; Wang Y; Shu H; Fu S; Huang J; Paulus JK; Schuster M; Saunders DGO; Win J; Vleeshouwers V; Wang Y; Zheng X; van der Hoorn RAL; Dong S New Phytol; 2021 Mar; 229(6):3424-3439. PubMed ID: 33251609 [TBL] [Abstract][Full Text] [Related]
6. Metabolic Model of the Rodenburg SYA; Seidl MF; Judelson HS; Vu AL; Govers F; de Ridder D mBio; 2019 Jul; 10(4):. PubMed ID: 31289172 [TBL] [Abstract][Full Text] [Related]
7. Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Song J; Win J; Tian M; Schornack S; Kaschani F; Ilyas M; van der Hoorn RA; Kamoun S Proc Natl Acad Sci U S A; 2009 Feb; 106(5):1654-9. PubMed ID: 19171904 [TBL] [Abstract][Full Text] [Related]
8. Quantitative Proteomics Reveals the Dynamic Regulation of the Tomato Proteome in Response to Fan KT; Hsu Y; Yeh CF; Chang CH; Chang WH; Chen YR Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33920680 [TBL] [Abstract][Full Text] [Related]
9. EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Torto TA; Li S; Styer A; Huitema E; Testa A; Gow NA; van West P; Kamoun S Genome Res; 2003 Jul; 13(7):1675-85. PubMed ID: 12840044 [TBL] [Abstract][Full Text] [Related]
10. AlphaFold-Multimer predicts cross-kingdom interactions at the plant-pathogen interface. Homma F; Huang J; van der Hoorn RAL Nat Commun; 2023 Sep; 14(1):6040. PubMed ID: 37758696 [TBL] [Abstract][Full Text] [Related]
11. Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans. Raffaele S; Win J; Cano LM; Kamoun S BMC Genomics; 2010 Nov; 11():637. PubMed ID: 21080964 [TBL] [Abstract][Full Text] [Related]
12. The plant defense and pathogen counterdefense mediated by Hevea brasiliensis serine protease HbSPA and Phytophthora palmivora extracellular protease inhibitor PpEPI10. Ekchaweng K; Evangelisti E; Schornack S; Tian M; Churngchow N PLoS One; 2017; 12(5):e0175795. PubMed ID: 28459807 [TBL] [Abstract][Full Text] [Related]
13. Extracellular proteolytic cascade in tomato activates immune protease Rcr3. Paulus JK; Kourelis J; Ramasubramanian S; Homma F; Godson A; Hörger AC; Hong TN; Krahn D; Ossorio Carballo L; Wang S; Win J; Smoker M; Kamoun S; Dong S; van der Hoorn RAL Proc Natl Acad Sci U S A; 2020 Jul; 117(29):17409-17417. PubMed ID: 32616567 [TBL] [Abstract][Full Text] [Related]
14. [Exoproteinases of the oomycete Phytophthora infestans]. Gvozdeva EL; Ievleva EV; Gerasimova NG; Ozeretskovskaia OL; Valueva TA Prikl Biokhim Mikrobiol; 2004; 40(2):194-200. PubMed ID: 15125197 [TBL] [Abstract][Full Text] [Related]
15. Invertases in Phytophthora infestans Localize to Haustoria and Are Programmed for Infection-Specific Expression. Kagda MS; Martínez-Soto D; Ah-Fong AMV; Judelson HS mBio; 2020 Oct; 11(5):. PubMed ID: 33051363 [TBL] [Abstract][Full Text] [Related]
16. MiR1918 enhances tomato sensitivity to Phytophthora infestans infection. Luan Y; Cui J; Wang W; Meng J Sci Rep; 2016 Oct; 6():35858. PubMed ID: 27779242 [TBL] [Abstract][Full Text] [Related]
17. An effector-targeted protease contributes to defense against Phytophthora infestans and is under diversifying selection in natural hosts. Kaschani F; Shabab M; Bozkurt T; Shindo T; Schornack S; Gu C; Ilyas M; Win J; Kamoun S; van der Hoorn RA Plant Physiol; 2010 Dec; 154(4):1794-804. PubMed ID: 20940351 [TBL] [Abstract][Full Text] [Related]
18. Effect of Temperature on Growth and Sporulation of US-22, US-23, and US-24 Clonal Lineages of Phytophthora infestans and Implications for Late Blight Epidemiology. Seidl Johnson AC; Frost KE; Rouse DI; Gevens AJ Phytopathology; 2015 Apr; 105(4):449-59. PubMed ID: 25423069 [TBL] [Abstract][Full Text] [Related]
19. Antimicrobial activity of a honeybee (Apis cerana) venom Kazal-type serine protease inhibitor. Kim BY; Lee KS; Zou FM; Wan H; Choi YS; Yoon HJ; Kwon HW; Je YH; Jin BR Toxicon; 2013 Dec; 76():110-7. PubMed ID: 24076031 [TBL] [Abstract][Full Text] [Related]
20. Identification of a new pathogen-induced member of the subtilisin-like processing protease family from plants. Tornero P; Conejero V; Vera P J Biol Chem; 1997 May; 272(22):14412-9. PubMed ID: 9162080 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]