BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 15096692)

  • 1. Macrophage stimulation using a group B-streptococcus exotoxin (CM101) leads to axonal regrowth in the injured optic nerve.
    Ohlsson M; Mattsson P; Wamil BD; Hellerqvist CG; Svensson M
    Restor Neurol Neurosci; 2004; 22(1):33-41. PubMed ID: 15096692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A temporal study of axonal degeneration and glial scar formation following a standardized crush injury of the optic nerve in the adult rat.
    Ohlsson M; Mattsson P; Svensson M
    Restor Neurol Neurosci; 2004; 22(1):1-10. PubMed ID: 15096689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinal ganglion cell and nonneuronal cell responses to a microcrush lesion of adult rat optic nerve.
    Sellés-Navarro I; Ellezam B; Fajardo R; Latour M; McKerracher L
    Exp Neurol; 2001 Feb; 167(2):282-9. PubMed ID: 11161616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early decompression of the injured optic nerve reduces axonal degeneration and improves functional outcome in the adult rat.
    Ohlsson M; Svensson M
    Exp Brain Res; 2007 May; 179(1):121-30. PubMed ID: 17103208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xylazine promotes axonal regeneration in the crushed optic nerve of adult rats.
    Kurimoto T; Ishii M; Tagami Y; Nishimura M; Miyoshi T; Tsukamoto Y; Mimura O
    Neuroreport; 2006 Oct; 17(14):1525-9. PubMed ID: 16957602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brilliant blue G treatment facilitates regeneration after optic nerve injury in the adult rat.
    Ridderström M; Ohlsson M
    Neuroreport; 2014 Dec; 25(17):1405-10. PubMed ID: 25340564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased intrinsic neuronal vulnerability and decreased beneficial reaction of macrophages on axonal regeneration in aged rats.
    Luo JM; Geng YQ; Zhi Y; Zhang MZ; van Rooijen N; Cui Q
    Neurobiol Aging; 2010 Jun; 31(6):1003-9. PubMed ID: 18755527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facilitated sprouting in a peripheral nerve injury.
    Xu QG; Midha R; Martinez JA; Guo GF; Zochodne DW
    Neuroscience; 2008 Apr; 152(4):877-87. PubMed ID: 18358630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peripheral nerve-stimulated macrophages simulate a peripheral nerve-like regenerative response in rat transected optic nerve.
    Lazarov-Spiegler O; Solomon AS; Schwartz M
    Glia; 1998 Nov; 24(3):329-37. PubMed ID: 9775984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glial cell and macrophage reactions in rat spinal ganglion after peripheral nerve lesions: an immunocytochemical and morphometric study.
    Fenzi F; Benedetti MD; Moretto G; Rizzuto N
    Arch Ital Biol; 2001 Sep; 139(4):357-65. PubMed ID: 11603078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methylprednisolone treatment does not influence axonal regeneration or degeneration following optic nerve injury in the adult rat.
    Ohlsson M; Westerlund U; Langmoen IA; Svensson M
    J Neuroophthalmol; 2004 Mar; 24(1):11-8. PubMed ID: 15206432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regenerative and other responses to injury in the retinal stump of the optic nerve in adult albino rats: transection of the intraorbital optic nerve.
    Zeng BY; Anderson PN; Campbell G; Lieberman AR
    J Anat; 1994 Dec; 185 ( Pt 3)(Pt 3):643-61. PubMed ID: 7649800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic action of brain-derived neurotrophic factor and lens injury promotes retinal ganglion cell survival, but leads to optic nerve dystrophy in vivo.
    Pernet V; Di Polo A
    Brain; 2006 Apr; 129(Pt 4):1014-26. PubMed ID: 16418178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal quantification of recruit and resident macrophages after crush nerve injury utilizing immunohistochemistry.
    Omura T; Omura K; Sano M; Sawada T; Hasegawa T; Nagano A
    Brain Res; 2005 Sep; 1057(1-2):29-36. PubMed ID: 16112089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lens injury stimulates adult mouse retinal ganglion cell axon regeneration via both macrophage- and lens-derived factors.
    Lorber B; Berry M; Logan A
    Eur J Neurosci; 2005 Apr; 21(7):2029-34. PubMed ID: 15869497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathologic changes in chronic intraorbital optic nerve damage in rabbits.
    Cai J; Cheng J; Huang X; Li Y; Ma X; Li Y; Wei R
    Brain Res; 2009 Apr; 1267():103-15. PubMed ID: 19230826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GM-CSF inhibits glial scar formation and shows long-term protective effect after spinal cord injury.
    Huang X; Kim JM; Kong TH; Park SR; Ha Y; Kim MH; Park H; Yoon SH; Park HC; Park JO; Min BH; Choi BH
    J Neurol Sci; 2009 Feb; 277(1-2):87-97. PubMed ID: 19033079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and characteristics of fish glial fibrillary acidic protein: implications for optic nerve regeneration.
    Cohen I; Shani Y; Schwartz M
    J Comp Neurol; 1993 Aug; 334(3):431-43. PubMed ID: 8376626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of glial fibrillary acidic protein (GFAP) in goldfish optic nerve following injury.
    Stafford CA; Shehab SA; Nona SN; Cronly-Dillon JR
    Glia; 1990; 3(1):33-42. PubMed ID: 2138134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunohistochemical localization of CNTFRalpha in adult mouse retina and optic nerve following intraorbital nerve crush: evidence for the axonal loss of a trophic factor receptor after injury.
    Miotke JA; MacLennan AJ; Meyer RL
    J Comp Neurol; 2007 Jan; 500(2):384-400. PubMed ID: 17111380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.