These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 15097993)

  • 41. Dynamic Buffering of Extracellular Chemokine by a Dedicated Scavenger Pathway Enables Robust Adaptation during Directed Tissue Migration.
    Wong M; Newton LR; Hartmann J; Hennrich ML; Wachsmuth M; Ronchi P; Guzmán-Herrera A; Schwab Y; Gavin AC; Gilmour D
    Dev Cell; 2020 Feb; 52(4):492-508.e10. PubMed ID: 32059773
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Epithelial cancer cell migration: a role for chemokine receptors?
    Scotton CJ; Wilson JL; Milliken D; Stamp G; Balkwill FR
    Cancer Res; 2001 Jul; 61(13):4961-5. PubMed ID: 11431324
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Semaphorin 5A is a bifunctional axon guidance cue for axial motoneurons in vivo.
    Hilario JD; Rodino-Klapac LR; Wang C; Beattie CE
    Dev Biol; 2009 Feb; 326(1):190-200. PubMed ID: 19059233
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Focal adhesion kinase signaling at sites of integrin-mediated adhesion controls axon pathfinding.
    Robles E; Gomez TM
    Nat Neurosci; 2006 Oct; 9(10):1274-83. PubMed ID: 16964253
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The SDF-1/CXCR4 pathway and the development of the cerebellar system.
    Vilz TO; Moepps B; Engele J; Molly S; Littman DR; Schilling K
    Eur J Neurosci; 2005 Oct; 22(8):1831-9. PubMed ID: 16262623
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Involvement of Islet-2 in the Slit signaling for axonal branching and defasciculation of the sensory neurons in embryonic zebrafish.
    Yeo SY; Miyashita T; Fricke C; Little MH; Yamada T; Kuwada JY; Huh TL; Chien CB; Okamoto H
    Mech Dev; 2004 Apr; 121(4):315-24. PubMed ID: 15110042
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cxcr7 controls neuronal migration by regulating chemokine responsiveness.
    Sánchez-Alcañiz JA; Haege S; Mueller W; Pla R; Mackay F; Schulz S; López-Bendito G; Stumm R; Marín O
    Neuron; 2011 Jan; 69(1):77-90. PubMed ID: 21220100
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamic filopodia are required for chemokine-dependent intracellular polarization during guided cell migration in vivo.
    Meyen D; Tarbashevich K; Banisch TU; Wittwer C; Reichman-Fried M; Maugis B; Grimaldi C; Messerschmidt EM; Raz E
    Elife; 2015 Apr; 4():. PubMed ID: 25875301
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The chemokine SDF-1 differentially regulates axonal elongation and branching in hippocampal neurons.
    Pujol F; Kitabgi P; Boudin H
    J Cell Sci; 2005 Mar; 118(Pt 5):1071-80. PubMed ID: 15731012
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nerve growth cone guidance mediated by G protein-coupled receptors.
    Xiang Y; Li Y; Zhang Z; Cui K; Wang S; Yuan XB; Wu CP; Poo MM; Duan S
    Nat Neurosci; 2002 Sep; 5(9):843-8. PubMed ID: 12161754
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differentiation of a Schwann cell line expressing reporter genes in the presence and absence of nerve axons.
    Fooks AR; Schmitz S; Rushton JA; Howe SJ; Graham PD; Godbole V; Stacey G; Clegg JC; Haynes LW
    Biochem Soc Trans; 1997 Aug; 25(3):543S. PubMed ID: 9388757
    [No Abstract]   [Full Text] [Related]  

  • 52. Directional tissue migration through a self-generated chemokine gradient.
    Donà E; Barry JD; Valentin G; Quirin C; Khmelinskii A; Kunze A; Durdu S; Newton LR; Fernandez-Minan A; Huber W; Knop M; Gilmour D
    Nature; 2013 Nov; 503(7475):285-9. PubMed ID: 24067609
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rear traction forces drive adherent tissue migration in vivo.
    Yamaguchi N; Zhang Z; Schneider T; Wang B; Panozzo D; Knaut H
    Nat Cell Biol; 2022 Feb; 24(2):194-204. PubMed ID: 35165417
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Glial chain migration requires pioneer cells.
    Aigouy B; Lepelletier L; Giangrande A
    J Neurosci; 2008 Nov; 28(45):11635-41. PubMed ID: 18987199
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pathway selection by ectopic motoneurons in embryonic zebrafish.
    Gatchalian CL; Eisen JS
    Neuron; 1992 Jul; 9(1):105-12. PubMed ID: 1632965
    [TBL] [Abstract][Full Text] [Related]  

  • 56. HuC-eGFP mosaic labelling of neurons in zebrafish enables in vivo live cell imaging of growth cones.
    St John JA; Key B
    J Mol Histol; 2012 Dec; 43(6):615-23. PubMed ID: 23104578
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Single neuron mosaics of the drosophila gigas mutant project beyond normal targets and modify behavior.
    Canal I; Acebes A; Ferrús A
    J Neurosci; 1998 Feb; 18(3):999-1008. PubMed ID: 9437021
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fishing at the cellular level.
    Tamplin OJ; Zon LI
    Nat Methods; 2010 Aug; 7(8):600-1. PubMed ID: 20676080
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Manipulating leukocyte interactions in vivo through optogenetic chemokine release.
    Sarris M; Olekhnovitch R; Bousso P
    Blood; 2016 Jun; 127(23):e35-41. PubMed ID: 27057000
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fractals and the analysis of growth paths.
    Katz MJ; George EB
    Bull Math Biol; 1985; 47(2):273-86. PubMed ID: 4027437
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.