BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 15098582)

  • 1. Reinforcement learning algorithms for robotic navigation in dynamic environments.
    Yen GG; Hickey TW
    ISA Trans; 2004 Apr; 43(2):217-30. PubMed ID: 15098582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments.
    Mackay AK; Riazuelo L; Montano L
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reinforcement Learning Algorithms and Applications in Healthcare and Robotics: A Comprehensive and Systematic Review.
    Al-Hamadani MNA; Fadhel MA; Alzubaidi L; Balazs H
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MOSAIC for multiple-reward environments.
    Sugimoto N; Haruno M; Doya K; Kawato M
    Neural Comput; 2012 Mar; 24(3):577-606. PubMed ID: 22168558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A clustering-based graph Laplacian framework for value function approximation in reinforcement learning.
    Xu X; Huang Z; Graves D; Pedrycz W
    IEEE Trans Cybern; 2014 Dec; 44(12):2613-25. PubMed ID: 24802018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SOVEREIGN: An autonomous neural system for incrementally learning planned action sequences to navigate towards a rewarded goal.
    Gnadt W; Grossberg S
    Neural Netw; 2008 Jun; 21(5):699-758. PubMed ID: 17996419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of reinforcement learning in cognitive radio networks: models and algorithms.
    Yau KL; Poh GS; Chien SF; Al-Rawi HA
    ScientificWorldJournal; 2014; 2014():209810. PubMed ID: 24995352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human locomotion with reinforcement learning using bioinspired reward reshaping strategies.
    Nowakowski K; Carvalho P; Six JB; Maillet Y; Nguyen AT; Seghiri I; M'Pemba L; Marcille T; Ngo ST; Dao TT
    Med Biol Eng Comput; 2021 Jan; 59(1):243-256. PubMed ID: 33417125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kernel-based least squares policy iteration for reinforcement learning.
    Xu X; Hu D; Lu X
    IEEE Trans Neural Netw; 2007 Jul; 18(4):973-92. PubMed ID: 17668655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vision-Based Robot Navigation through Combining Unsupervised Learning and Hierarchical Reinforcement Learning.
    Zhou X; Bai T; Gao Y; Han Y
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30939807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ensemble algorithms in reinforcement learning.
    Wiering MA; van Hasselt H
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):930-6. PubMed ID: 18632380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A parameter control method in reinforcement learning to rapidly follow unexpected environmental changes.
    Murakoshi K; Mizuno J
    Biosystems; 2004 Nov; 77(1-3):109-17. PubMed ID: 15527950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-organization of spiking neural network that generates autonomous behavior in a real mobile robot.
    Alnajjar F; Murase K
    Int J Neural Syst; 2006 Aug; 16(4):229-39. PubMed ID: 16972312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforcement learning of motor skills with policy gradients.
    Peters J; Schaal S
    Neural Netw; 2008 May; 21(4):682-97. PubMed ID: 18482830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Actor-Critic Algorithm with Hierarchical Model Learning and Planning.
    Zhong S; Liu Q; Fu Q
    Comput Intell Neurosci; 2016; 2016():4824072. PubMed ID: 27795704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heuristically-accelerated multiagent reinforcement learning.
    Bianchi RA; Martins MF; Ribeiro CH; Costa AH
    IEEE Trans Cybern; 2014 Feb; 44(2):252-65. PubMed ID: 23757547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-organizing neural networks integrating domain knowledge and reinforcement learning.
    Teng TH; Tan AH; Zurada JM
    IEEE Trans Neural Netw Learn Syst; 2015 May; 26(5):889-902. PubMed ID: 25881365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reinforcement Learning Tracking Control for Robotic Manipulator With Kernel-Based Dynamic Model.
    Hu Y; Wang W; Liu H; Liu L
    IEEE Trans Neural Netw Learn Syst; 2020 Sep; 31(9):3570-3578. PubMed ID: 31689218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Idiotypic immune networks in mobile-robot control.
    Whitbrook AM; Aickelin U; Garibaldi JM
    IEEE Trans Syst Man Cybern B Cybern; 2007 Dec; 37(6):1581-98. PubMed ID: 18179075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.