These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15098671)

  • 1. X-ray interference evidence concerning the range of crossbridge movement, and backbone contributions to the meridional pattern.
    Huxley HE; Reconditi M; Stewart A; Irving T
    Adv Exp Med Biol; 2003; 538():233-41; discussion 241-2. PubMed ID: 15098671
    [No Abstract]   [Full Text] [Related]  

  • 2. Modeling analysis of myosin-based meridional X-ray reflections from frog skeletal muscles in relaxed and contracting states.
    Oshima K; Takezawa Y; Sugimoto Y; Kiyotoshi M; Wakabayashi K
    Adv Exp Med Biol; 2003; 538():243-9. PubMed ID: 15098672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct modeling of x-ray diffraction pattern from skeletal muscle in rigor.
    Koubassova NA; Tsaturyan AK
    Biophys J; 2002 Aug; 83(2):1082-97. PubMed ID: 12124288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of sinusoidal length oscillations to detect myosin conformation by time-resolved X-ray diffraction.
    Cecchi G; Bagni MA; Colombini B; Ashley CC; Amenitsch H; Bernstorff S; Griffiths PJ
    Adv Exp Med Biol; 2003; 538():267-77; discussion 277. PubMed ID: 15098674
    [No Abstract]   [Full Text] [Related]  

  • 6. The working stroke of myosin crossbridges.
    Huxley H
    Biophys J; 1995 Apr; 68(4 Suppl):55S-56S; discussion 57S-58S. PubMed ID: 7787101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray interference studies of crossbridge action in muscle contraction: evidence from quick releases.
    Huxley H; Reconditi M; Stewart A; Irving T
    J Mol Biol; 2006 Nov; 363(4):743-61. PubMed ID: 17007871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpretation of the X-ray diffraction pattern from relaxed skeletal muscle and modelling of the thick filament structure.
    Malinchik SB; Lednev VV
    J Muscle Res Cell Motil; 1992 Aug; 13(4):406-19. PubMed ID: 1401037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Helical order in myosin filaments and evidence for one ligand inducing multiple myosin conformations.
    Yu LC; Xu S; Gu J; White HD; Offer G
    Adv Exp Med Biol; 2003; 538():305-16. PubMed ID: 15098678
    [No Abstract]   [Full Text] [Related]  

  • 10. A structural origin of latency relaxation in frog skeletal muscle.
    Yagi N
    Biophys J; 2007 Jan; 92(1):162-71. PubMed ID: 17028137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myosin filament structure and myosin crossbridge dynamics in fish and insect muscles.
    Squire JM; AL-Khayat HA; Harford JJ; Hudson L; Irving TC; Knupp C; Mok NS; Reedy MK
    Adv Exp Med Biol; 2003; 538():251-66; discussion 266. PubMed ID: 15098673
    [No Abstract]   [Full Text] [Related]  

  • 12. Equatorial A-band and I-band X-ray diffraction from relaxed and active fish muscle. Further details of myosin crossbridge behaviour.
    Harford J; Luther P; Squire J
    J Mol Biol; 1994 Jun; 239(4):500-12. PubMed ID: 8006964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray interference studies of crossbridge action in muscle contraction: evidence from muscles during steady shortening.
    Huxley H; Reconditi M; Stewart A; Irving T
    J Mol Biol; 2006 Nov; 363(4):762-72. PubMed ID: 16979661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray diffraction studies of muscle and the crossbridge cycle.
    Squire JM; Knupp C
    Adv Protein Chem; 2005; 71():195-255. PubMed ID: 16230113
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of the number of actin-bound S1 and axial force on X-ray patterns of intact skeletal muscle.
    Griffiths PJ; Bagni MA; Colombini B; Amenitsch H; Bernstorff S; Funari S; Ashley CC; Cecchi G
    Biophys J; 2006 Feb; 90(3):975-84. PubMed ID: 16272435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle contraction: actin filaments enter the fray.
    Molloy JE
    Biophys J; 2005 Jul; 89(1):1-2. PubMed ID: 15849256
    [No Abstract]   [Full Text] [Related]  

  • 17. Mechanical and structural properties underlying contraction of skeletal muscle fibers after partial 1-ethyl-3-[3-dimethylamino)propyl]carbodiimide cross-linking.
    Bershitsky S; Tsaturyan A; Bershitskaya O; Mashanov G; Brown P; Webb M; Ferenczi MA
    Biophys J; 1996 Sep; 71(3):1462-74. PubMed ID: 8874020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle.
    Huxley HE; Stewart A; Sosa H; Irving T
    Biophys J; 1994 Dec; 67(6):2411-21. PubMed ID: 7696481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of myosin subfragment 1 to glycerinated insect flight muscle in the rigor state.
    Goody RS; Reedy MC; Hofmann W; Holmes KC; Reedy MK
    Biophys J; 1985 Feb; 47(2 Pt 1):151-69. PubMed ID: 3978197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of equatorial x-ray diffraction patterns from muscle fibers: factors that affect the intensities.
    Malinchik S; Yu LC
    Biophys J; 1995 May; 68(5):2023-31. PubMed ID: 7612844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.