These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 15098689)

  • 1. Force response to stretches in activated frog muscle fibres at low tension.
    Bagni MA; Colombini B; Colomo F; Geiger P; Berlinguer Palmini R; Cecchi G
    Adv Exp Med Biol; 2003; 538():429-38; discussion 438-9. PubMed ID: 15098689
    [No Abstract]   [Full Text] [Related]  

  • 2. Non-cross-bridge calcium-dependent stiffness in frog muscle fibers.
    Bagni MA; Colombini B; Geiger P; Berlinguer Palmini R; Cecchi G
    Am J Physiol Cell Physiol; 2004 Jun; 286(6):C1353-7. PubMed ID: 14749216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A non-cross-bridge stiffness in activated frog muscle fibers.
    Bagni MA; Cecchi G; Colombini B; Colomo F
    Biophys J; 2002 Jun; 82(6):3118-27. PubMed ID: 12023235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effects of agonists and antagonists of rhyanodine receptors on potassium contractures in twitch and tonic frog skeletal muscle fibers].
    Katina IE; Nasledov GA
    Biofizika; 2006; 51(5):898-905. PubMed ID: 17131831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of solution tonicity on crossbridge properties and myosin lever arm disposition in intact frog muscle fibres.
    Colombini B; Bagni MA; Cecchi G; Griffiths PJ
    J Physiol; 2007 Jan; 578(Pt 1):337-46. PubMed ID: 17023505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crossbridge properties investigated by fast ramp stretching of activated frog muscle fibres.
    Bagni MA; Cecchi G; Colombini B
    J Physiol; 2005 May; 565(Pt 1):261-8. PubMed ID: 15774512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of stiffness precedes cross-bridge attachment during the early tension rise in single frog muscle fibres.
    Bagni MA; Cecchi G; Colomo F; Garzella P
    J Physiol; 1994 Dec; 481 ( Pt 2)(Pt 2):273-8. PubMed ID: 7738825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crossbridge viscosity in activated frog muscle fibres.
    Cecchi G; Bagni MA; Cecchini E; Colombini B; Colomo F
    Biophys Chem; 1997 Oct; 68(1-3):1-8. PubMed ID: 9468605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From inward spread of activation, active elongation to the effect of organic calcium channel blockers in muscle excitation-contraction coupling.
    Gonzalez-Serratos ; Ortega A; Valle-Aguilera R; Chang R
    Adv Exp Med Biol; 2005; 565():249-64; discussion 264-5, 397-403. PubMed ID: 16106980
    [No Abstract]   [Full Text] [Related]  

  • 10. The biphasic force-velocity relationship in frog muscle fibres and its evaluation in terms of cross-bridge function.
    Edman KA; Månsson A; Caputo C
    J Physiol; 1997 Aug; 503 ( Pt 1)(Pt 1):141-56. PubMed ID: 9288682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development of the force-velocity relation in normal and dantrolene-treated frog single muscle fibres.
    Cecchi G; Colomo F; Piazzesi G
    J Muscle Res Cell Motil; 1983 Aug; 4(4):395-404. PubMed ID: 6605365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy transfer during stress relaxation of contracting frog muscle fibres.
    Mantovani M; Heglund NC; Cavagna GA
    J Physiol; 2001 Dec; 537(Pt 3):923-39. PubMed ID: 11744765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determinants of force rise time during isometric contraction of frog muscle fibres.
    Edman KA; Josephson RK
    J Physiol; 2007 May; 580(Pt.3):1007-19. PubMed ID: 17303645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force-velocity relation in deuterium oxide-treated frog single muscle fibres during the rise of tension in an isometric tetanus.
    Cecchi G; Colomo F; Lombardi V
    J Physiol; 1981 Aug; 317():207-21. PubMed ID: 6273545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship between tension and slowly varying intracellular calcium concentration in intact frog skeletal muscle.
    Morgan DL; Claflin DR; Julian FJ
    J Physiol; 1997 Apr; 500 ( Pt 1)(Pt 1):177-92. PubMed ID: 9097942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of rapid shortening on rate of force regeneration and myoplasmic [Ca2+] in intact frog skeletal muscle fibres.
    Vandenboom R; Claflin DR; Julian FJ
    J Physiol; 1998 Aug; 511 ( Pt 1)(Pt 1):171-80. PubMed ID: 9679172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contractile inactivation in frog skeletal muscle fibers. The effects of low calcium, tetracaine, dantrolene, D-600, and nifedipine.
    Caputo C; Bolaños P
    J Gen Physiol; 1987 Mar; 89(3):421-42. PubMed ID: 3559516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the organic Ca2+ channel blocker D-600 on sarcoplasmic reticulum Ca2+ uptake in skeletal muscle.
    Ortega A; Gonzalez-Serratos H; Lepock JR
    Am J Physiol; 1997 Jan; 272(1 Pt 1):C310-7. PubMed ID: 9038837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of repetitive tetanic stimulation at long intervals on excitation-contraction coupling in frog skeletal muscle.
    Bruton JD; Lännergren J; Westerblad H
    J Physiol; 1996 Aug; 495 ( Pt 1)(Pt 1):15-22. PubMed ID: 8866348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The contractile response during steady lengthening of stimulated frog muscle fibres.
    Lombardi V; Piazzesi G
    J Physiol; 1990 Dec; 431():141-71. PubMed ID: 2100305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.