BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 15098726)

  • 61. Hippocampal-prefrontal coherence mediates working memory and selective attention at distinct frequency bands and provides a causal link between schizophrenia and its risk gene GRIA1.
    Bygrave AM; Jahans-Price T; Wolff AR; Sprengel R; Kullmann DM; Bannerman DM; Kätzel D
    Transl Psychiatry; 2019 Apr; 9(1):142. PubMed ID: 31000699
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Spatial learning deficit in dopamine D(1) receptor knockout mice.
    El-Ghundi M; Fletcher PJ; Drago J; Sibley DR; O'Dowd BF; George SR
    Eur J Pharmacol; 1999 Oct; 383(2):95-106. PubMed ID: 10585522
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Protective effect of 5-HT1B receptor gene deletion on the age-related decline in spatial learning abilities in mice.
    Buhot MC; Wolff M; Savova M; Malleret G; Hen R; Segu L
    Behav Brain Res; 2003 Jun; 142(1-2):135-42. PubMed ID: 12798274
    [TBL] [Abstract][Full Text] [Related]  

  • 64. New spatial cognition tests for mice: passive place avoidance on stable and active place avoidance on rotating arenas.
    Cimadevilla JM; Fenton AA; Bures J
    Brain Res Bull; 2001 Mar; 54(5):559-63. PubMed ID: 11397548
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Modest neuropsychological deficits caused by reduced noradrenaline metabolism in mice heterozygous for a mutated tyrosine hydroxylase gene.
    Kobayashi K; Noda Y; Matsushita N; Nishii K; Sawada H; Nagatsu T; Nakahara D; Fukabori R; Yasoshima Y; Yamamoto T; Miura M; Kano M; Mamiya T; Miyamoto Y; Nabeshima T
    J Neurosci; 2000 Mar; 20(6):2418-26. PubMed ID: 10704516
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Large-Scale Validation of the Paddling Pool Task in the Clockmaze for Studying Hippocampus-Based Spatial Cognition in Mice.
    Sankowski R; Huerta TS; Kalra R; Klein TJ; Strohl JJ; Al-Abed Y; Robbiati S; Huerta PT
    Front Behav Neurosci; 2019; 13():121. PubMed ID: 31231197
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Caloric restriction and spatial learning in old mice.
    Bellush LL; Wright AM; Walker JP; Kopchick J; Colvin RA
    Physiol Behav; 1996 Aug; 60(2):541-7. PubMed ID: 8840916
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Severe cognitive and motor coordination deficits in tenascin-R-deficient mice.
    Montag-Sallaz M; Montag D
    Genes Brain Behav; 2003 Feb; 2(1):20-31. PubMed ID: 12882316
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A simple modification of the water maze test to enhance daily detection of spatial memory in rats and mice.
    Choi SH; Woodlee MT; Hong JJ; Schallert T
    J Neurosci Methods; 2006 Sep; 156(1-2):182-93. PubMed ID: 16621016
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Protocol for Short- and Longer-term Spatial Learning and Memory in Mice.
    Willis EF; Bartlett PF; Vukovic J
    Front Behav Neurosci; 2017; 11():197. PubMed ID: 29089878
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Emotional instability but intact spatial cognition in adenosine receptor 1 knock out mice.
    Lang UE; Lang F; Richter K; Vallon V; Lipp HP; Schnermann J; Wolfer DP
    Behav Brain Res; 2003 Oct; 145(1-2):179-88. PubMed ID: 14529816
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Persistence of spatial memory in the Morris water tank task.
    Panakhova E; Buresová O; Bures J
    Int J Psychophysiol; 1984 Aug; 2(1):5-10. PubMed ID: 6542093
    [TBL] [Abstract][Full Text] [Related]  

  • 73. DNA fragmentation factor 45 knockout mice exhibit longer memory retention in the novel object recognition task compared to wild-type mice.
    Slane McQuade JM; Vorhees CV; Xu M; Zhang J
    Physiol Behav; 2002 Jun; 76(2):315-20. PubMed ID: 12044605
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Passive and active place avoidance as a tool of spatial memory research in rats.
    Cimadevilla JM; Kaminsky Y; Fenton A; Bures J
    J Neurosci Methods; 2000 Oct; 102(2):155-64. PubMed ID: 11040412
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effects of age on water escape behavior and on repeated acquisition in rats.
    van der Staay FJ; de Jonge M
    Behav Neural Biol; 1993 Jul; 60(1):33-41. PubMed ID: 8216157
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Behavioral alterations are associated with vitamin B12 deficiency in the transcobalamin receptor/CD320 KO mouse.
    Arora K; Sequeira JM; Hernández AI; Alarcon JM; Quadros EV
    PLoS One; 2017; 12(5):e0177156. PubMed ID: 28545069
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Cx43 and NMDA receptors changes in UL122 genetically modified mice hippocampus: a mechanism for spatial memory impairment.
    Wang Z; Qian D; Zhu W; Hu M; Qin Z; Zhang X; Liu M; Wang B
    Int J Clin Exp Pathol; 2018; 11(1):129-137. PubMed ID: 31938094
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Analysis of hippocampal-dependent learning and memory behaviour in mice lacking Nfix from adult neural stem cells.
    Zalucki O; Harkins D; Harris L; Burne THJ; Gronostajski RM; Piper M
    BMC Res Notes; 2018 Aug; 11(1):564. PubMed ID: 30081965
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Behavioral manipulation of retrieval in a spatial memory task for Drosophila melanogaster.
    Wustmann G; Heisenberg M
    Learn Mem; 1997; 4(4):328-36. PubMed ID: 10706370
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Dorsal hippocampal damage disrupts the auditory context-dependent attenuation of taste neophobia in mice.
    Grau-Perales AB; Levy ERJ; Fenton AA; Gallo M
    Neurobiol Learn Mem; 2019 Jan; 157():121-127. PubMed ID: 30562590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.