These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 15098826)
1. Laser ablation of dental tissues with picosecond pulses of 1.06-microm radiation transmitted through a hollow-core photonic-crystal fiber. Konorov SO; Mitrokhin VP; Fedotov AB; Sidorov-Biryukov DA; Beloglazov VI; Skibina NB; Shcherbakov AV; Wintner E; Scalora M; Zheltikov AM Appl Opt; 2004 Apr; 43(11):2251-6. PubMed ID: 15098826 [TBL] [Abstract][Full Text] [Related]
2. Hollow-core photonic-crystal fibres for laser dentistry. Konorov SO; Mitrokhin VP; Fedotov AB; Sidorov-Biryukov DA; Beloglazov VI; Skibina NB; Wintner E; Scalora M; Zheltikov AM Phys Med Biol; 2004 Apr; 49(7):1359-68. PubMed ID: 15128211 [TBL] [Abstract][Full Text] [Related]
3. Enhanced four-wave mixing in a hollow-core photonic-crystal fiber. Konorov SO; Fedotov AB; Zheltikov AM Opt Lett; 2003 Aug; 28(16):1448-50. PubMed ID: 12943087 [TBL] [Abstract][Full Text] [Related]
4. Improved hollow-core photonic crystal fiber design for delivery of nanosecond pulses in laser micromachining applications. Shephard JD; Couny F; Russell PS; Jones JD; Knight JC; Hand DP Appl Opt; 2005 Jul; 44(21):4582-8. PubMed ID: 16047910 [TBL] [Abstract][Full Text] [Related]
5. Investigation into the optimum beam shape and fluence for selective ablation of dental calculus at lambda = 400 nm. Schoenly JE; Seka W; Rechmann P Lasers Surg Med; 2010 Jan; 42(1):51-61. PubMed ID: 20077488 [TBL] [Abstract][Full Text] [Related]
6. [A comparison of 3 laser systems for dental enamel ablation]. Niemz MH; Eisenmann L; Pioch T Schweiz Monatsschr Zahnmed; 1993; 103(10):1252-6. PubMed ID: 8235522 [TBL] [Abstract][Full Text] [Related]
7. Characterization of enamel and dentin response to Nd:YAG picosecond laser ablation. Lizarelli RF; Kurachi C; Misoguti L; Bagnato VS J Clin Laser Med Surg; 1999 Jun; 17(3):127-31. PubMed ID: 11199832 [TBL] [Abstract][Full Text] [Related]
8. Development of a fiber-optic laser delivery system capable of delivering 213 and 266 nm pulsed Nd:YAG laser radiation for tissue ablation in a fluid environment. Miller J; Yu XB; Yu PK; Cringle SJ; Yu DY Appl Opt; 2011 Feb; 50(6):876-85. PubMed ID: 21343967 [TBL] [Abstract][Full Text] [Related]
9. A comparative study of nanosecond and picosecond laser ablation in enamel: morphological aspects. Lizarelli RF; Kurachi C; Misoguti L; Bagnato VS J Clin Laser Med Surg; 2000 Jun; 18(3):151-7. PubMed ID: 11799980 [TBL] [Abstract][Full Text] [Related]
10. Rapid and conservative ablation and modification of enamel, dentin, and alveolar bone using a high repetition rate transverse excited atmospheric pressure CO2 laser operating at lambda=9.3 micro. Fan K; Bell P; Fried D J Biomed Opt; 2006; 11(6):064008. PubMed ID: 17212531 [TBL] [Abstract][Full Text] [Related]
11. Delivery of high energy Er:YAG pulsed laser light at 2.94 µm through a silica hollow core photonic crystal fibre. Urich A; Maier RR; Mangan BJ; Renshaw S; Knight JC; Hand DP; Shephard JD Opt Express; 2012 Mar; 20(6):6677-84. PubMed ID: 22418551 [TBL] [Abstract][Full Text] [Related]
12. Highly efficient optical fiber sensor for instantaneous measurement of elevated temperature in dental hard tissues irradiated with an Nd:YaG laser. Naeem ZJ; Salman AM; Faris RA; Al-Janabi A Appl Opt; 2021 Jul; 60(21):6189-6198. PubMed ID: 34613285 [TBL] [Abstract][Full Text] [Related]
13. 3D volume-ablation rate and thermal side effects with the Er:YAG and Nd:YAG laser. Mehl A; Kremers L; Salzmann K; Hickel R Dent Mater; 1997 Jul; 13(4):246-51. PubMed ID: 11696904 [TBL] [Abstract][Full Text] [Related]
14. Ultrastructural change of enamel exposed to a normal pulsed Nd-YAG laser. Tagomori S; Iwase T Caries Res; 1995; 29(6):513-20. PubMed ID: 8556757 [TBL] [Abstract][Full Text] [Related]
15. Ablation of composite resins using Er:YAG laser--comparison with enamel and dentin. Lizarelli Rde F; Moriyama LT; Bagnato VS Lasers Surg Med; 2003; 33(2):132-9. PubMed ID: 12913886 [TBL] [Abstract][Full Text] [Related]
16. The ablation threshold of Er:YAG and Er:YSGG laser radiation in dental enamel. Apel C; Meister J; Ioana RS; Franzen R; Hering P; Gutknecht N Lasers Med Sci; 2002; 17(4):246-52. PubMed ID: 12417978 [TBL] [Abstract][Full Text] [Related]
17. The role of mesoscopic modelling in understanding the response of dental enamel to mid-infrared radiation. Vila Verde A; Ramos MM; Stoneham AM Phys Med Biol; 2007 May; 52(10):2703-17. PubMed ID: 17473346 [TBL] [Abstract][Full Text] [Related]
18. In vitro study of the Nd:YAG laser effect on human dental enamel: optical and scanning electron microscope analysis. Pelino JE; Mello JB; Eduardo CP; Jorge AO J Clin Laser Med Surg; 1999; 17(4):171-7. PubMed ID: 11199841 [TBL] [Abstract][Full Text] [Related]
19. High Power Spark Delivery System Using Hollow Core Kagome Lattice Fibers. Dumitrache C; Rath J; Yalin AP Materials (Basel); 2014 Aug; 7(8):5700-5710. PubMed ID: 28788155 [TBL] [Abstract][Full Text] [Related]
20. Mechanism of water augmentation during IR laser ablation of dental enamel. Fried D; Ashouri N; Breunig T; Shori R Lasers Surg Med; 2002; 31(3):186-93. PubMed ID: 12224092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]