These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 15099082)

  • 1. Oxygen economy of cytochrome P450: what is the origin of the mixed functionality as a dehydrogenase-oxidase enzyme compared with its normal function?
    Kumar D; De Visser SP; Shaik S
    J Am Chem Soc; 2004 Apr; 126(16):5072-3. PubMed ID: 15099082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Propene activation by the oxo-iron active species of taurine/alpha-ketoglutarate dioxygenase (TauD) enzyme. How does the catalysis compare to heme-enzymes?
    de Visser SP
    J Am Chem Soc; 2006 Aug; 128(30):9813-24. PubMed ID: 16866538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic alcohol oxidations by an iron(III) porphyrin complex: relevance to cytochrome P-450 catalytic oxidation and involvement of the two-state radical rebound mechanism.
    Han JH; Yoo SK; Seo JS; Hong SJ; Kim SK; Kim C
    Dalton Trans; 2005 Jan; (2):402-6. PubMed ID: 15616733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Palladium oxidase catalysis: selective oxidation of organic chemicals by direct dioxygen-coupled turnover.
    Stahl SS
    Angew Chem Int Ed Engl; 2004 Jun; 43(26):3400-20. PubMed ID: 15221827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-organic chemistry and cytochrome P-450-dependent catalysis.
    Sligar SG; Gelb MH; Heimbrook DC
    Xenobiotica; 1984; 14(1-2):63-86. PubMed ID: 6372267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Models and mechanisms of O-O bond activation by cytochrome P450. A critical assessment of the potential role of multiple active intermediates in oxidative catalysis.
    Hlavica P
    Eur J Biochem; 2004 Nov; 271(22):4335-60. PubMed ID: 15560776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How does the axial ligand of cytochrome P450 biomimetics influence the regioselectivity of aliphatic versus aromatic hydroxylation?
    de Visser SP; Tahsini L; Nam W
    Chemistry; 2009; 15(22):5577-87. PubMed ID: 19347895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of substrate on the spectral properties of oxyferrous wild-type and T252A cytochrome P450-CAM.
    Sono M; Perera R; Jin S; Makris TM; Sligar SG; Bryson TA; Dawson JH
    Arch Biochem Biophys; 2005 Apr; 436(1):40-9. PubMed ID: 15752707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of dioxygen catalyzed by pyrene-wired heme domain cytochrome P450 BM3 electrodes.
    Udit AK; Hill MG; Bittner VG; Arnold FH; Gray HB
    J Am Chem Soc; 2004 Aug; 126(33):10218-9. PubMed ID: 15315414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What factors influence the ratio of C-H hydroxylation versus C=C epoxidation by a nonheme cytochrome P450 biomimetic?
    de Visser SP
    J Am Chem Soc; 2006 Dec; 128(49):15809-18. PubMed ID: 17147391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dioxygen activation at non-heme iron: insights from rapid kinetic studies.
    Korendovych IV; Kryatov SV; Rybak-Akimova EV
    Acc Chem Res; 2007 Jul; 40(7):510-21. PubMed ID: 17521158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A valence bond modeling of trends in hydrogen abstraction barriers and transition states of hydroxylation reactions catalyzed by cytochrome P450 enzymes.
    Shaik S; Kumar D; de Visser SP
    J Am Chem Soc; 2008 Aug; 130(31):10128-40. PubMed ID: 18616242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gauging the relative oxidative powers of compound I, ferric-hydroperoxide, and the ferric-hydrogen peroxide species of cytochrome P450 toward C-H hydroxylation of a radical clock substrate.
    Derat E; Kumar D; Hirao H; Shaik S
    J Am Chem Soc; 2006 Jan; 128(2):473-84. PubMed ID: 16402834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide reacts with the ferryl-oxo catalytic intermediate of the CuB-lacking cytochrome bd terminal oxidase.
    Borisov VB; Forte E; Sarti P; Brunori M; Konstantinov AA; Giuffrè A
    FEBS Lett; 2006 Sep; 580(20):4823-6. PubMed ID: 16904110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study on electronic structures of FeOO, FeOOH, FeO(H2O), and FeO in hemes: as intermediate models of dioxygen reduction in cytochrome c oxidase.
    Yoshioka Y; Satoh H; Mitani M
    J Inorg Biochem; 2007 Oct; 101(10):1410-27. PubMed ID: 17662458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of coenzyme F420H2 oxidase (FprA), a di-iron flavoprotein from methanogenic Archaea catalyzing the reduction of O2 to H2O.
    Seedorf H; Hagemeier CH; Shima S; Thauer RK; Warkentin E; Ermler U
    FEBS J; 2007 Mar; 274(6):1588-99. PubMed ID: 17480207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethylene biosynthesis by 1-aminocyclopropane-1-carboxylic acid oxidase: a DFT study.
    Bassan A; Borowski T; Schofield CJ; Siegbahn PE
    Chemistry; 2006 Nov; 12(34):8835-46. PubMed ID: 16933342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparisons of (+/-)-benzo[a]pyrene-trans-7,8-dihydrodiol activation by human cytochrome P450 and aldo-keto reductase enzymes: effect of redox state and expression levels.
    Quinn AM; Penning TM
    Chem Res Toxicol; 2008 May; 21(5):1086-94. PubMed ID: 18402469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cis,cis-[(bpy)2RuVO]2O4+ catalyzes water oxidation formally via in situ generation of radicaloid RuIV-O*.
    Yang X; Baik MH
    J Am Chem Soc; 2006 Jun; 128(23):7476-85. PubMed ID: 16756301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-valent iron in chemical and biological oxidations.
    Groves JT
    J Inorg Biochem; 2006 Apr; 100(4):434-47. PubMed ID: 16516297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.