These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 15099093)
21. Improved intestinal delivery of salmon calcitonin by water-in-oil microemulsions. Fan Y; Li X; Zhou Y; Fan C; Wang X; Huang Y; Liu Y Int J Pharm; 2011 Sep; 416(1):323-30. PubMed ID: 21726618 [TBL] [Abstract][Full Text] [Related]
22. Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions. Zhang W; Zhu Y; Liu X; Wang D; Li J; Jiang L; Jin J Angew Chem Int Ed Engl; 2014 Jan; 53(3):856-60. PubMed ID: 24307602 [TBL] [Abstract][Full Text] [Related]
24. [Water in oil microemulsions containing NaCl for transdermal delivery of fluorouracil]. Xiao YY; Liu F; Chen ZP; Ping QN Yao Xue Xue Bao; 2011 Jun; 46(6):720-6. PubMed ID: 21882535 [TBL] [Abstract][Full Text] [Related]
25. In vitro and in vivo evaluation of a simple microemulsion formulation for propofol. Li G; Fan Y; Li X; Wang X; Li Y; Liu Y; Li M Int J Pharm; 2012 Apr; 425(1-2):53-61. PubMed ID: 22266535 [TBL] [Abstract][Full Text] [Related]
26. Head-group size or hydrophilicity of surfactants: the major regulator of lipase activity in cationic water-in-oil microemulsions. Das D; Roy S; Mitra RN; Dasgupta A; Das PK Chemistry; 2005 Aug; 11(17):4881-9. PubMed ID: 15977280 [TBL] [Abstract][Full Text] [Related]
27. Application of microemulsions in dermal and transdermal drug delivery. Santos P; Watkinson AC; Hadgraft J; Lane ME Skin Pharmacol Physiol; 2008; 21(5):246-59. PubMed ID: 18562799 [TBL] [Abstract][Full Text] [Related]
28. A general method for synthesizing enzyme-polymer conjugates in reverse emulsions using Pluronic as a reactive surfactant. Wu X; Ge J; Zhu J; Zhang Y; Yong Y; Liu Z Chem Commun (Camb); 2015 Jun; 51(47):9674-7. PubMed ID: 25977947 [TBL] [Abstract][Full Text] [Related]
29. Structure of microemulsions with gemini surfactant studied by solvatochromic probe and diffusion NMR. Ben Moshe M; Magdassi S; Cohen Y; Avram L J Colloid Interface Sci; 2004 Aug; 276(1):221-6. PubMed ID: 15219452 [TBL] [Abstract][Full Text] [Related]
30. Effect of counterions on the activity of lipase in cationic water-in-oil microemulsions. Debnath S; Dasgupta A; Mitra RN; Das PK Langmuir; 2006 Oct; 22(21):8732-40. PubMed ID: 17014111 [TBL] [Abstract][Full Text] [Related]
31. Microemulsions of triglyceride-based oils: The effect of co-oil and salinity on phase diagrams. Komesvarakul N; Sanders MD; Szekeres E; Acosta EJ; Faller JF; Mentlik T; Fisher LB; Nicoll G; Sabatini DA; Scamehorn JF J Cosmet Sci; 2006; 57(4):309-25. PubMed ID: 16957810 [TBL] [Abstract][Full Text] [Related]
32. Liquid oil that flows in spaces of aqueous foam without defoaming. Sonoda J; Sakai T; Inomata Y J Phys Chem B; 2014 Aug; 118(31):9438-44. PubMed ID: 25019527 [TBL] [Abstract][Full Text] [Related]
33. Kinetically stable propofol emulsions with reduced free drug concentration for intravenous delivery. Damitz R; Chauhan A Int J Pharm; 2015; 486(1-2):232-41. PubMed ID: 25839419 [TBL] [Abstract][Full Text] [Related]
34. Capillary flooding of wood with microemulsions from Winsor I systems. Carrillo CA; Saloni D; Lucia LA; Hubbe MA; Rojas OJ J Colloid Interface Sci; 2012 Sep; 381(1):171-9. PubMed ID: 22721790 [TBL] [Abstract][Full Text] [Related]
35. Effect of long-chain alcohols on SDS partitioning to the oil/water interface of emulsions and on droplet size. James-Smith MA; Alford K; Shah DO J Colloid Interface Sci; 2007 Nov; 315(1):307-12. PubMed ID: 17662299 [TBL] [Abstract][Full Text] [Related]
36. Auto-oscillation of surface tension: effect of pH on fatty acid systems. Kovalchuk NM; Vollhardt D Langmuir; 2010 Sep; 26(18):14624-7. PubMed ID: 20726531 [TBL] [Abstract][Full Text] [Related]
37. Application of surfactants and microemulsions to the extraction of pyrene and phenanthrene from soil with three different extraction methods. Song G; Lu C; Lin JM Anal Chim Acta; 2007 Jul; 596(2):312-8. PubMed ID: 17631112 [TBL] [Abstract][Full Text] [Related]
38. Controlling lipolysis through steric surfactants: new insights on the controlled degradation of submicron emulsions after oral and intravenous administration. Wulff-Pérez M; de Vicente J; Martín-Rodríguez A; Gálvez-Ruiz MJ Int J Pharm; 2012 Feb; 423(2):161-6. PubMed ID: 22209995 [TBL] [Abstract][Full Text] [Related]
39. Fatty acid chemistry at the oil-water interface: self-propelled oil droplets. Hanczyc MM; Toyota T; Ikegami T; Packard N; Sugawara T J Am Chem Soc; 2007 Aug; 129(30):9386-91. PubMed ID: 17616129 [TBL] [Abstract][Full Text] [Related]
40. The use of novel water-in-oil microemulsions in microemulsion electrokinetic chromatography. Altria KD; Broderick MF; Donegan S; Power J Electrophoresis; 2004 Feb; 25(4-5):645-52. PubMed ID: 14981692 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]