These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15099099)

  • 1. A comparison of the electrophilic reactivities of Zn2+ and acetic acid as catalysts of enolization: imperatives for enzymatic catalysis of proton transfer at carbon.
    Crugeiras J; Richard JP
    J Am Chem Soc; 2004 Apr; 126(16):5164-73. PubMed ID: 15099099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation and stability of enolates of acetamide and acetate anion: an Eigen plot for proton transfer at alpha-carbonyl carbon.
    Richard JP; Williams G; O'Donoghue AC; Amyes TL
    J Am Chem Soc; 2002 Mar; 124(12):2957-68. PubMed ID: 11902887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substituent effects on electrophilic catalysis by the carbonyl group: anatomy of the rate acceleration for PLP-catalyzed deprotonation of glycine.
    Crugeiras J; Rios A; Riveiros E; Richard JP
    J Am Chem Soc; 2011 Mar; 133(9):3173-83. PubMed ID: 21323335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the pKa of cyclobutanone: Brønsted correlation of the general base-catalyzed enolization in aqueous solution and the effect of ring strain.
    Cope SM; Tailor D; Nagorski RW
    J Org Chem; 2011 Jan; 76(2):380-90. PubMed ID: 21162595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycine enolates: the effect of formation of iminium ions to simple ketones on alpha-amino carbon acidity and a comparison with pyridoxal iminium ions.
    Crugeiras J; Rios A; Riveiros E; Amyes TL; Richard JP
    J Am Chem Soc; 2008 Feb; 130(6):2041-50. PubMed ID: 18198876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic imperatives for aldose-ketose isomerization in water: specific, general base- and metal ion-catalyzed isomerization of glyceraldehyde with proton and hydride transfer.
    Nagorski RW; Richard JP
    J Am Chem Soc; 2001 Feb; 123(5):794-802. PubMed ID: 11456612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular structure, tautomeric stability, protonation and deprotonation effects, vibrational, NMR and NBO analyses of 2,4-Dioxoimidazolidine-5-acetic acid (DOIAA) by quantum chemical calculations.
    Sridevi C; Velraj G
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():533-43. PubMed ID: 24291430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphate binding energy and catalysis by small and large molecules.
    Morrow JR; Amyes TL; Richard JP
    Acc Chem Res; 2008 Apr; 41(4):539-48. PubMed ID: 18293941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rabbit muscle aldolase catalyzed proton exchange of hydroxyacetone phosphate with solvent.
    Pratt RF
    Biochemistry; 1977 Sep; 16(18):3988-94. PubMed ID: 911752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP-dependent enolization of acetone by acetone carboxylase from Rhodobacter capsulatus.
    Boyd JM; Ensign SA
    Biochemistry; 2005 Jun; 44(23):8543-53. PubMed ID: 15938645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton transfer reactions between nitric acid and acetone, hydroxyacetone, acetaldehyde and benzaldehyde in the solid phase.
    Lasne J; Laffon C; Parent P
    Phys Chem Chem Phys; 2012 Dec; 14(45):15715-21. PubMed ID: 23090634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic insight into the formation of acetic acid from the direct conversion of methane and carbon dioxide on zinc-modified H-ZSM-5 zeolite.
    Wu JF; Yu SM; Wang WD; Fan YX; Bai S; Zhang CW; Gao Q; Huang J; Wang W
    J Am Chem Soc; 2013 Sep; 135(36):13567-73. PubMed ID: 23981101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the Carboxylate in Enzyme-Catalyzed Decarboxylation of Orotidine 5'-Monophosphate: Transition State Stabilization Dominates Over Ground State Destabilization.
    Goryanova B; Amyes TL; Richard JP
    J Am Chem Soc; 2019 Aug; 141(34):13468-13478. PubMed ID: 31365243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of enzymatic and non-enzymatic nitroethane anion formation: thermodynamics and contribution of tunneling.
    Valley MP; Fitzpatrick PF
    J Am Chem Soc; 2004 May; 126(20):6244-5. PubMed ID: 15149217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of Catalysis by Nitroalkane Oxidase.
    Major DT; Gupta PK; Gao J
    J Phys Chem B; 2023 Jan; 127(1):151-162. PubMed ID: 36580021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO
    Fujita E; Grills DC; Manbeck GF; Polyansky DE
    Acc Chem Res; 2022 Mar; 55(5):616-628. PubMed ID: 35133133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncovering the Role of Key Active-Site Side Chains in Catalysis: An Extended Brønsted Relationship for Substrate Deprotonation Catalyzed by Wild-Type and Variants of Triosephosphate Isomerase.
    Kulkarni YS; Amyes TL; Richard JP; Kamerlin SCL
    J Am Chem Soc; 2019 Oct; 141(40):16139-16150. PubMed ID: 31508957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic catalysis of proton transfer at carbon: activation of triosephosphate isomerase by phosphite dianion.
    Amyes TL; Richard JP
    Biochemistry; 2007 May; 46(19):5841-54. PubMed ID: 17444661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational equilibria in formic acid and the adduct of formic acid and hexafluoroacetone, HCO2C(CF3)2OH.
    Pawar DM; Cain-Davis D; Noe EA
    J Org Chem; 2007 Mar; 72(6):2003-7. PubMed ID: 17302458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring carbonyl-amine reaction and enolization of 1-hydroxy-2-propanone (Acetol) by FTIR spectroscopy.
    Yaylayan VA; Harty-Majors S; Ismail AA
    J Agric Food Chem; 1999 Jun; 47(6):2335-40. PubMed ID: 10794632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.