These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 15099107)
1. Molecular control of recombination dynamics in dye-sensitized nanocrystalline TiO2 films: free energy vs distance dependence. Clifford JN; Palomares E; Nazeeruddin MK; Grätzel M; Nelson J; Li X; Long NJ; Durrant JR J Am Chem Soc; 2004 Apr; 126(16):5225-33. PubMed ID: 15099107 [TBL] [Abstract][Full Text] [Related]
2. Supramolecular control of charge-transfer dynamics on dye-sensitized nanocrystalline TiO2 films. Hirata N; Lagref JJ; Palomares EJ; Durrant JR; Nazeeruddin MK; Gratzel M; Di Censo D Chemistry; 2004 Feb; 10(3):595-602. PubMed ID: 14767923 [TBL] [Abstract][Full Text] [Related]
3. Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy. Haque SA; Palomares E; Cho BM; Green AN; Hirata N; Klug DR; Durrant JR J Am Chem Soc; 2005 Mar; 127(10):3456-62. PubMed ID: 15755165 [TBL] [Abstract][Full Text] [Related]
4. Alkyl chain barriers for kinetic optimization in dye-sensitized solar cells. Kroeze JE; Hirata N; Koops S; Nazeeruddin MK; Schmidt-Mende L; Grätzel M; Durrant JR J Am Chem Soc; 2006 Dec; 128(50):16376-83. PubMed ID: 17165794 [TBL] [Abstract][Full Text] [Related]
5. Transient absorption studies and numerical modeling of iodine photoreduction by nanocrystalline TiO2 films. Green AN; Chandler RE; Haque SA; Nelson J; Durrant JR J Phys Chem B; 2005 Jan; 109(1):142-50. PubMed ID: 16850997 [TBL] [Abstract][Full Text] [Related]
6. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. Palomares E; Clifford JN; Haque SA; Lutz T; Durrant JR J Am Chem Soc; 2003 Jan; 125(2):475-82. PubMed ID: 12517161 [TBL] [Abstract][Full Text] [Related]
7. Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films. Green AN; Palomares E; Haque SA; Kroon JM; Durrant JR J Phys Chem B; 2005 Jun; 109(25):12525-33. PubMed ID: 16852549 [TBL] [Abstract][Full Text] [Related]
8. Influence of surface area on charge transport and recombination in dye-sensitized TiO2 solar cells. Zhu K; Kopidakis N; Neale NR; van de Lagemaat J; Frank AJ J Phys Chem B; 2006 Dec; 110(50):25174-80. PubMed ID: 17165961 [TBL] [Abstract][Full Text] [Related]
9. Rationale for kinetic heterogeneity of ultrafast light-induced electron transfer from Ru(II) complex sensitizers to nanocrystalline TiO2. Wenger B; Grätzel M; Moser JE J Am Chem Soc; 2005 Sep; 127(35):12150-1. PubMed ID: 16131154 [TBL] [Abstract][Full Text] [Related]
10. Electron transport in coumarin-dye-sensitized nanocrystalline TiO2 electrodes. Hara K; Miyamoto K; Abe Y; Yanagida M J Phys Chem B; 2005 Dec; 109(50):23776-8. PubMed ID: 16375359 [TBL] [Abstract][Full Text] [Related]
11. Room-temperature preparation of nanocrystalline TiO2 films and the influence of surface properties on dye-sensitized solar energy conversion. Zhang D; Downing JA; Knorr FJ; McHale JL J Phys Chem B; 2006 Nov; 110(43):21890-8. PubMed ID: 17064155 [TBL] [Abstract][Full Text] [Related]
12. Multistep electron transfer processes on dye co-sensitized nanocrystalline TiO2 films. Clifford JN; Palomares E; Nazeeruddin MK; Thampi R; Grätzel M; Durrant JR J Am Chem Soc; 2004 May; 126(18):5670-1. PubMed ID: 15125651 [TBL] [Abstract][Full Text] [Related]
13. Observation of diffusion and tunneling recombination of dye-photoinjected electrons in ultrathin TiO2 layers by surface photovoltage transients. Mora-Seró I; Dittrich T; Belaidi A; Garcia-Belmonte G; Bisquert J J Phys Chem B; 2005 Aug; 109(31):14932-8. PubMed ID: 16852891 [TBL] [Abstract][Full Text] [Related]
14. Spectroelectrochemical studies of hole percolation on functionalised nanocrystalline TiO2 films: a comparison of two different ruthenium complexes. Li X; Nazeeruddin MK; Thelakkat M; Barnes PR; Vilar R; Durrant JR Phys Chem Chem Phys; 2011 Jan; 13(4):1575-84. PubMed ID: 21082092 [TBL] [Abstract][Full Text] [Related]
15. Characterization of photoinduced self-exchange reactions at molecule-semiconductor interfaces by transient polarization spectroscopy: lateral intermolecular energy and hole transfer across sensitized TiO2 thin films. Ardo S; Meyer GJ J Am Chem Soc; 2011 Oct; 133(39):15384-96. PubMed ID: 21861499 [TBL] [Abstract][Full Text] [Related]
16. Panchromatic sensitization of nanocrystalline TiO2 with cis-Bis(4-carboxy-2-[2'-(4'-carboxypyridyl)]quinoline)bis(thiocyanato-N)ruthenium(II). Yanagida M; Yamaguchi T; Kurashige M; Hara K; Katoh R; Sugihara H; Arakawa H Inorg Chem; 2003 Dec; 42(24):7921-31. PubMed ID: 14632509 [TBL] [Abstract][Full Text] [Related]
17. Kinetics of Iodine-Free Redox Shuttles in Dye-Sensitized Solar Cells: Interfacial Recombination and Dye Regeneration. Sun Z; Liang M; Chen J Acc Chem Res; 2015 Jun; 48(6):1541-50. PubMed ID: 26001106 [TBL] [Abstract][Full Text] [Related]
19. Electron transport and recombination in dye-sensitized mesoporous TiO2 probed by photoinduced charge-conductivity modulation spectroscopy with Monte Carlo modeling. Petrozza A; Groves C; Snaith HJ J Am Chem Soc; 2008 Oct; 130(39):12912-20. PubMed ID: 18767840 [TBL] [Abstract][Full Text] [Related]
20. Strongly coupled ruthenium-polypyridyl complexes for efficient electron injection in dye-sensitized semiconductor nanoparticles. Ramakrishna G; Jose DA; Kumar DK; Das A; Palit DK; Ghosh HN J Phys Chem B; 2005 Aug; 109(32):15445-53. PubMed ID: 16852959 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]