These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 15099585)

  • 1. Immobilization of biotinylated DNA on 2-D streptavidin crystals.
    Crucifix C; Uhring M; Schultz P
    J Struct Biol; 2004 Jun; 146(3):441-51. PubMed ID: 15099585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron microscopy of biotinylated protein complexes bound to streptavidin monolayer crystals.
    Han BG; Walton RW; Song A; Hwu P; Stubbs MT; Yannone SM; Arbeláez P; Dong M; Glaeser RM
    J Struct Biol; 2012 Oct; 180(1):249-53. PubMed ID: 22584152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA-Directed immobilization: efficient, reversible, and site-selective surface binding of proteins by means of covalent DNA-streptavidin conjugates.
    Niemeyer CM; Boldt L; Ceyhan B; Blohm D
    Anal Biochem; 1999 Mar; 268(1):54-63. PubMed ID: 10036162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surprising lability of biotin-streptavidin bond during transcription of biotinylated DNA bound to paramagnetic streptavidin beads.
    Fujita K; Silver J
    Biotechniques; 1993 Apr; 14(4):608-17. PubMed ID: 7682819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional crystallisation of soluble protein complexes.
    Schultz P; Crucifix C; Lebeau L
    Methods Mol Biol; 2009; 543():353-67. PubMed ID: 19378176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single probe nucleic acid immobilization on chemically modified single protein by controlling ionic strength and pH.
    Yamasaki R; Ito M; Lee B; Jung H; Lee H; Kawai T
    Anal Chim Acta; 2007 Nov; 603(1):76-81. PubMed ID: 17950060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering monomeric streptavidin and its ligands with infinite affinity in binding but reversibility in interaction.
    Wu SC; Ng KK; Wong SL
    Proteins; 2009 Nov; 77(2):404-12. PubMed ID: 19425108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of methods for generating planar DNA-modified surfaces for hybridization studies.
    Kasry A; Borri P; Davies PR; Harwood A; Thomas N; Lofas S; Dale T
    ACS Appl Mater Interfaces; 2009 Aug; 1(8):1793-8. PubMed ID: 20355796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Templated protein assembly on micro-contact-printed surface patterns. Use of the SNAP-tag protein functionality.
    Iversen L; Cherouati N; Berthing T; Stamou D; Martinez KL
    Langmuir; 2008 Jun; 24(12):6375-81. PubMed ID: 18484753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization.
    Su X; Wu YJ; Robelek R; Knoll W
    Langmuir; 2005 Jan; 21(1):348-53. PubMed ID: 15620323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Streptavidin crystals as nanostructured supports and image-calibration references for cryo-EM data collection.
    Wang L; Ounjai P; Sigworth FJ
    J Struct Biol; 2008 Nov; 164(2):190-8. PubMed ID: 18707004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging and spectroscopic comparison of multi-step methods to form DNA arrays based on the biotin-streptavidin system.
    Gajos K; Petrou P; Budkowski A; Awsiuk K; Bernasik A; Misiakos K; Rysz J; Raptis I; Kakabakos S
    Analyst; 2015 Feb; 140(4):1127-39. PubMed ID: 25535629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotin-streptavidin-labeled oligonucleotides as probes of helicase mechanisms.
    Morris PD; Tackett AJ; Raney KD
    Methods; 2001 Feb; 23(2):149-59. PubMed ID: 11181034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulation of the assembly of bis-biotinylated DNA and streptavidin.
    Richter J; Adler M; Niemeyer CM
    Chemphyschem; 2003 Jan; 4(1):79-83. PubMed ID: 12596469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long shelf-life streptavidin support-films suitable for electron microscopy of biological macromolecules.
    Han BG; Watson Z; Kang H; Pulk A; Downing KH; Cate J; Glaeser RM
    J Struct Biol; 2016 Aug; 195(2):238-244. PubMed ID: 27320699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time imaging of DNA-streptavidin complex formation in solution using a high-speed atomic force microscope.
    Kobayashi M; Sumitomo K; Torimitsu K
    Ultramicroscopy; 2007; 107(2-3):184-90. PubMed ID: 16949754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA-directed protein immobilization on mixed self-assembled monolayers via a streptavidin bridge.
    Ladd J; Boozer C; Yu Q; Chen S; Homola J; Jiang S
    Langmuir; 2004 Sep; 20(19):8090-5. PubMed ID: 15350077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterotetramers formed by an S-layer-streptavidin fusion protein and core-streptavidin as a nanoarrayed template for biochip development.
    Huber C; Liu J; Egelseer EM; Moll D; Knoll W; Sleytr UB; Sára M
    Small; 2006 Jan; 2(1):142-50. PubMed ID: 17193570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of a hexameric RNA packaging motor in a viral polymerase complex.
    Huiskonen JT; Jäälinoja HT; Briggs JA; Fuller SD; Butcher SJ
    J Struct Biol; 2007 May; 158(2):156-64. PubMed ID: 17095250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel structural labeling method using cryo-electron tomography and biotin-streptavidin system.
    Oda T; Kikkawa M
    J Struct Biol; 2013 Sep; 183(3):305-311. PubMed ID: 23859837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.