BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 15099585)

  • 1. Immobilization of biotinylated DNA on 2-D streptavidin crystals.
    Crucifix C; Uhring M; Schultz P
    J Struct Biol; 2004 Jun; 146(3):441-51. PubMed ID: 15099585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron microscopy of biotinylated protein complexes bound to streptavidin monolayer crystals.
    Han BG; Walton RW; Song A; Hwu P; Stubbs MT; Yannone SM; Arbeláez P; Dong M; Glaeser RM
    J Struct Biol; 2012 Oct; 180(1):249-53. PubMed ID: 22584152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA-Directed immobilization: efficient, reversible, and site-selective surface binding of proteins by means of covalent DNA-streptavidin conjugates.
    Niemeyer CM; Boldt L; Ceyhan B; Blohm D
    Anal Biochem; 1999 Mar; 268(1):54-63. PubMed ID: 10036162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surprising lability of biotin-streptavidin bond during transcription of biotinylated DNA bound to paramagnetic streptavidin beads.
    Fujita K; Silver J
    Biotechniques; 1993 Apr; 14(4):608-17. PubMed ID: 7682819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional crystallisation of soluble protein complexes.
    Schultz P; Crucifix C; Lebeau L
    Methods Mol Biol; 2009; 543():353-67. PubMed ID: 19378176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single probe nucleic acid immobilization on chemically modified single protein by controlling ionic strength and pH.
    Yamasaki R; Ito M; Lee B; Jung H; Lee H; Kawai T
    Anal Chim Acta; 2007 Nov; 603(1):76-81. PubMed ID: 17950060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering monomeric streptavidin and its ligands with infinite affinity in binding but reversibility in interaction.
    Wu SC; Ng KK; Wong SL
    Proteins; 2009 Nov; 77(2):404-12. PubMed ID: 19425108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of methods for generating planar DNA-modified surfaces for hybridization studies.
    Kasry A; Borri P; Davies PR; Harwood A; Thomas N; Lofas S; Dale T
    ACS Appl Mater Interfaces; 2009 Aug; 1(8):1793-8. PubMed ID: 20355796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Templated protein assembly on micro-contact-printed surface patterns. Use of the SNAP-tag protein functionality.
    Iversen L; Cherouati N; Berthing T; Stamou D; Martinez KL
    Langmuir; 2008 Jun; 24(12):6375-81. PubMed ID: 18484753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization.
    Su X; Wu YJ; Robelek R; Knoll W
    Langmuir; 2005 Jan; 21(1):348-53. PubMed ID: 15620323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Streptavidin crystals as nanostructured supports and image-calibration references for cryo-EM data collection.
    Wang L; Ounjai P; Sigworth FJ
    J Struct Biol; 2008 Nov; 164(2):190-8. PubMed ID: 18707004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging and spectroscopic comparison of multi-step methods to form DNA arrays based on the biotin-streptavidin system.
    Gajos K; Petrou P; Budkowski A; Awsiuk K; Bernasik A; Misiakos K; Rysz J; Raptis I; Kakabakos S
    Analyst; 2015 Feb; 140(4):1127-39. PubMed ID: 25535629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotin-streptavidin-labeled oligonucleotides as probes of helicase mechanisms.
    Morris PD; Tackett AJ; Raney KD
    Methods; 2001 Feb; 23(2):149-59. PubMed ID: 11181034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulation of the assembly of bis-biotinylated DNA and streptavidin.
    Richter J; Adler M; Niemeyer CM
    Chemphyschem; 2003 Jan; 4(1):79-83. PubMed ID: 12596469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long shelf-life streptavidin support-films suitable for electron microscopy of biological macromolecules.
    Han BG; Watson Z; Kang H; Pulk A; Downing KH; Cate J; Glaeser RM
    J Struct Biol; 2016 Aug; 195(2):238-244. PubMed ID: 27320699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time imaging of DNA-streptavidin complex formation in solution using a high-speed atomic force microscope.
    Kobayashi M; Sumitomo K; Torimitsu K
    Ultramicroscopy; 2007; 107(2-3):184-90. PubMed ID: 16949754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA-directed protein immobilization on mixed self-assembled monolayers via a streptavidin bridge.
    Ladd J; Boozer C; Yu Q; Chen S; Homola J; Jiang S
    Langmuir; 2004 Sep; 20(19):8090-5. PubMed ID: 15350077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterotetramers formed by an S-layer-streptavidin fusion protein and core-streptavidin as a nanoarrayed template for biochip development.
    Huber C; Liu J; Egelseer EM; Moll D; Knoll W; Sleytr UB; Sára M
    Small; 2006 Jan; 2(1):142-50. PubMed ID: 17193570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of a hexameric RNA packaging motor in a viral polymerase complex.
    Huiskonen JT; Jäälinoja HT; Briggs JA; Fuller SD; Butcher SJ
    J Struct Biol; 2007 May; 158(2):156-64. PubMed ID: 17095250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel structural labeling method using cryo-electron tomography and biotin-streptavidin system.
    Oda T; Kikkawa M
    J Struct Biol; 2013 Sep; 183(3):305-311. PubMed ID: 23859837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.