BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 15099727)

  • 1. Stimulation of reductive dechlorination of hexachlorobenzene in soil by inducing the native microbial activity.
    Brahushi F; Dörfler U; Schroll R; Munch JC
    Chemosphere; 2004 Jun; 55(11):1477-84. PubMed ID: 15099727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hexachlorobenzene dechlorination as affected by organic fertilizer and urea applications in two rice planted paddy soils in a pot experiment.
    Liu CY; Jiang X; Yang XL; Song Y
    Sci Total Environ; 2010 Jan; 408(4):958-64. PubMed ID: 19889446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hexachlorobenzene dechlorination as affected by nitrogen application in acidic paddy soil.
    Liu C; Jiang X; Wang F; Yang X; Wang T
    J Hazard Mater; 2010 Jul; 179(1-3):709-14. PubMed ID: 20381238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic biodegradability of Tween surfactants used as a carbon source for the microbial reductive dechlorination of hexachlorobenzene.
    Yeh DH; Pavlostathis SG
    Water Sci Technol; 2005; 52(1-2):343-9. PubMed ID: 16180448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of composting organic fertilizer supplies on hexachlorobenzene dechlorination in paddy soils].
    Liu CY; Jiang X
    Huan Jing Ke Xue; 2013 Apr; 34(4):1583-9. PubMed ID: 23798146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of biochar on dechlorination of hexachlorobenzene and the bacterial community in paddy soil.
    Song Y; Bian Y; Wang F; Herzberger A; Yang X; Gu C; Jiang X
    Chemosphere; 2017 Nov; 186():116-123. PubMed ID: 28772178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial hexachlorobenzene dechlorination under three reducing conditions.
    Chang BV; Su CJ; Yuan SY
    Chemosphere; 1998 Jun; 36(13):2721-30. PubMed ID: 9745704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the persistence of hexachlorobenzene in the ecosphere.
    Mansour M; Scheunert I; Viswanathan R; Korte F
    IARC Sci Publ; 1986; (77):53-9. PubMed ID: 3596753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hexachlorobenzene dechlorination by indigenous sediment microorganisms.
    Chen IM; Wanitchapichat W; Jirakittayakorn T; Sanohniti S; Sudjarid W; Wantawin C; Voranisarakul J; Anotai J
    J Hazard Mater; 2010 May; 177(1-3):244-50. PubMed ID: 20031314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of low-molecular-weight organic carbon on anaerobic degradation and volatilization of hexachlorobenzene in soils].
    Liu CY; Yu GF; Jiang X; Wang T
    Huan Jing Ke Xue; 2008 May; 29(5):1418-24. PubMed ID: 18624217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of hexachlorobenzene-dechlorinating mixed cultures using polysorbate surfactants as a carbon source.
    Yeh DH; Pavlostathis SG
    Water Sci Technol; 2001; 43(2):43-50. PubMed ID: 11380204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dechlorination of Hexachlorobenzene in Contaminated Soils Using a Nanometallic Al/CaO Dispersion Mixture: Optimization through Response Surface Methodology.
    Jiang Y; Shang Y; Yu S; Liu J
    Int J Environ Res Public Health; 2018 Apr; 15(5):. PubMed ID: 29702570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexachlorobenzene dechlorination in constructed wetland mesocosms.
    Zhou Y; Tigane T; Li X; Truu M; Truu J; Mander U
    Water Res; 2013 Jan; 47(1):102-10. PubMed ID: 23089357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reductive dechlorination of hexachlorobenzene subjected to several conditions in a bioelectrochemical system.
    Wang H; Yi S; Cao X; Fang Z; Li X
    Ecotoxicol Environ Saf; 2017 May; 139():172-178. PubMed ID: 28135664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergic effect of calcium oxide and iron (III) oxide on the dechlorination of hexachlorobenzene.
    Ma X; Zheng M; Liu W; Qian Y; Zhao X; Zhang B
    Chemosphere; 2005 Aug; 60(6):796-801. PubMed ID: 15939458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of competitive terminal electron acceptor processes on dechlorination of cis-1,2-dichloroethene and 1,2-dichloroethane in constructed wetland soils.
    Kassenga GR; Pardue JH
    FEMS Microbiol Ecol; 2006 Aug; 57(2):311-23. PubMed ID: 16867148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced degradation of 14C-HCB in two tropical clay soils using multiple anaerobic-aerobic cycles.
    Kengara FO; Doerfler U; Welzl G; Ruth B; Munch JC; Schroll R
    Environ Pollut; 2013 Feb; 173():168-75. PubMed ID: 23202647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dithionite promoted microbial dechlorination of hexachlorobenzene while goethite further accelerated abiotic degradation by sulfidation in paddy soil.
    Fan J; Liu C; Zheng J; Song Y
    Ecotoxicol Environ Saf; 2023 Jul; 259():115047. PubMed ID: 37220705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of microbial activity, soil water content and added copper on the temporal distribution patterns of HCB and DDT among different soil organic matter fractions.
    Zhang JJ; Wen B; Shan XQ
    Environ Pollut; 2008 Mar; 152(1):245-52. PubMed ID: 17597272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous degradation of toxic refractory organic pesticide and bioelectricity generation using a soil microbial fuel cell.
    Cao X; Song HL; Yu CY; Li XN
    Bioresour Technol; 2015; 189():87-93. PubMed ID: 25864035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.